9 research outputs found

    Transportador de correia: componentes e cálculos básicos para seu dimensionamento

    No full text
    Increasingly, people searches for an efficient and economic way for transporting bulk materials. Transport through belts is now the most widely used mean for transporting bulk materials, used by companies from various sectors such as mining, quarrying, agribusiness, etc. There are many advantages of using a conveyor belt as compared to rail or by truck. Trucks needs a driver, have a high risk of accidents as well as a high cost for maintenance and as well as trains, after making the downloading of the material, return empty to the next load. The cost for the construction of a railway is very high, making it often impossible. The conveyor belt have a high cost of installation, but it works 24 hours a day, 365 days a year. The upper side of the belt is always loaded, the maintenance cost is average and the risk of accidents is low, causing it to be the ideal way to transport bulk materials. This monography aims to interest the reader about what is a conveyor belt, what are its main components and demonstrate the basic calculations for their sizing and selection of components. Throughout the work, scaled a belt conveyor for use in the mining sector, but the concepts demonstrated apply to the transport of any materialCada vez mais, têm-se buscado um meio de transportar materiais a granel eficiente e econômico. O transporte através de correia é, hoje, o meio mais utilizado para o transporte de materiais a granel, utilizado por empresas de diversos setores, tais como mineração, siderurgia, pedreiras, agronegócios, etc. São inúmeras as vantagens do uso de uma correia transportadora em comparação com o transporte ferroviário ou através de caminhões. Caminhões necessitam de motorista, possuem um alto risco de acidentes, bem como um custo elevado com manutenção e, assim como os trens, após efetuarem a descarga do material, voltam vazios para o próximo carregamento. O custo para a construção de uma estrada de ferro é altíssimo, tornando, muitas vezes, o transporte ferroviário inviável. Já o transportador de correia possui um alto custo de instalação, porém trabalha 24 horas por dia, 365 dias por ano. O lado superior da correia está sempre carregado, o custo de manutenção é médio e o risco de acidentes é baixo, fazendo com que ele seja o meio ideal para transportar materiais a granel. Esse trabalho visa interar o leitor sobre o que é um transportador de correia, quais são seus principais componentes e demonstrar os cálculos básicos para seu dimensionamento e seleção de componentes. Ao longo do trabalho, será dimensionado um transportador para uso no setor de mineração, porém os conceitos nele demonstrados valem para o transporte de qualquer tipo de materia

    Ruthenium (ii) complexes of the biological interest: evaluation in vitro and in vivo of the antitumoral and genotoxic potential

    No full text
    This work evaluated ruthenium (II) complexes in biological assays in vitro on tumor cells and non-tumor, and in vivo in male Swiss and C57BL/6 mice, as well as the interactions with DNA and BSA were evaluated. The compounds (1) [Ru(dppb)(SpyMe2-N,S)2]; (2) [RuCl (SpyMe2-N,S)2NO]; (3) [Ru(Pic)2(dppb)]; (4) [Ru(Gly)(dppb)(4,4'-mebipy)]PF6; (5) [Ru(Gly)(dppb)(phen)]PF6; (6) [Ru(Tyr)(dppb)(4,4'-mebipy)]PF6; (7) [Ru(Tyr)(dppb)(phen)] PF6; (8) [Ru(Trp) (dppb)(phen)]PF6 and (9) ct-[RuCl(CO)(dppb)(bipy) ]PF6 (where, dppb = 1,4-bis (diphenylphosphino) butane; pic = picolinate; SpyMe2 = 4,6-dimethyl-2- mercaptopyrimidine, 4,4'-mebipy = 4,4'-dimethyl-2, 2'-bipyridine; phen = phenanthroline; Gly = glycine, Tyr = tyrosine, Trp = tryptophan; bipy = 2,2'- bipyridine) underwent a screening evaluation of cytotoxic activity on different tumor cell lines U251, HeLa, MCF7, HepG2 , MO59J and B16F10 and non tumour V79, in different concentrations by XTT method. The compound 9 was selected for the assessment of interactions with DNA and BSA, the genotoxic potential in vitro (V79 and HepG2 cells), in vivo (Swiss mice), as well as to evaluate the antitumor potential in vivo (C57BL/6 mice). In vitro experiments, the compoud 9 was assessed at various concentrations in the tests of interactions with DNA and BSA and micronucleus test. In vivo experiments, animals were treated with different doses of the compound 9 by intraperitoneal route in the micronucleus and comet assays, and subcutaneous route in the evaluating of the antitumoral potential. The micronucleus test in bone marrow and comet in hepatocytes were employed to study the potential genotoxic. For both assays, in vitro and in vivo, groups negative controls (water) and positive (methyl methanesulfonate and cisplatin) were included. The results of in vitro cytotoxicity assays showed that the HeLa and MCF7 tumor cells were sensitive to the majority of the complexes evaluated. However, the compound 9 showed cytotoxicity against all tumor cell lines evaluated, with low IC50 values. In the experiments of interaction with DNA and BSA, the compound 9 showed weak interactions with DNA and hydrophobic interactions for BSA. The results obtained in vitro micronucleus tests for complex 9 showed absence of genotoxicity in V79 cells and in HepG2 tumor cells showed up genotoxic at a concentration of 1.25 μmol L-1. In experiments in vivo micronucleus, the compound 9 was not genotoxic in different doses evaluated. Regarding the comet assay, the results showed an increased frequency of DNA damage in hepatocytes in a dose of 5.0 mg kg-1 b.w. In vivo antitumor test, animals treated with 5.0 mg kg-1 b.w. of compound 9, showed significant inhibition of tumor growth compared to untreated control. In the histopathological analysis, the compound 9 also showed significant inhibition of mitosis in relation to the control group. Most of the compounds evaluated in this study showed in vitro cytotoxic activity on tumor cells, especially in MCF7 cells. The compound 9 showed promising results in biological in vitro and in vivo assays, suggesting that this compound may be potential candidate for chemotherapy in cancer treatment.Financiadora de Estudos e ProjetosO presente trabalho avaliou complexos de rutênio (II) em ensaios biológicos in vitro em células tumorais e não tumorais e, in vivo em camundongos machos Swiss e C57BL/6, assim como foram avaliadas as interações com o DNA e a BSA. Os compostos (1) [Ru(dppb)(SpyMe2-N,S)2]; (2) [RuCl (SpyMe2- N,S)2NO]; (3) [Ru(Pic)2(dppb)]; (4) [Ru(Gly)(dppb)(4,4 -mebipy)]PF6; (5) Ru(Gly)(dppb)(fen)]PF6; (6) [Ru(Tyr)(dppb)(4,4 -mebipy)]PF6; (7) [Ru(Tyr)(dppb)(fen)]PF6; (8) [Ru(Trp)(dppb)(fen)]PF6 e (9) ct [RuCl(CO)(dppb)(bipy)]PF6 (onde, dppb = 1,4-bis(difenilfosfina)butano; pic = picolinato; SpyMe2 = 4,6-dimetil-2-mercaptopirimidina; 4,4 -mebipy = 4,4 - Dimetil-2,2 -bipiridina; fen = fenantrolina; Gly = glicina; Tyr = tirosina; Trp = triptofano; bipy = 2,2 -bipiridina) passaram por uma triagem na avaliação da atividade citotóxica em diferentes linhagens celulares tumorais U251, HeLa, MCF7, HepG2, MO59J e B16F10, e, não tumoral V79 pelo método XTT. O composto 9 foi selecionado para a avaliação das interações com o DNA e BSA, do potencial genotóxico in vitro (células V79 e HepG2) e in vivo (camundongos Swiss), bem como para a avaliação do potencial antitumoral in vivo (camundongos C57BL/6). Nos experimentos in vitro, o composto 9 foi avaliado em diferentes concentrações nos experimentos de interações com o DNA, BSA e de micronúcleo in vitro. Nos experimentos in vivo, os animais foram tratados via intraperitoneal em diferentes doses do composto 9 nos ensaios de micronúcleo e cometa, e por via subcutânea no ensaio antitumoral. Para ambos os testes, in vitro e in vivo, os grupos controles negativo (água) e positivo (cisplatina ou metilmetanosulfonato) foram incluídos. Os resultados de citotoxicidade in vitro mostraram que as células tumorais HeLa e MCF7 foram sensíveis para a maior parte dos compostos avaliados. Contudo, o composto 9 apresentou citotoxicidade frente a todas as linhagens tumorais avaliadas, apresentando baixos valores de IC50. Nos experimentos de interação com o DNA e BSA, o composto 9 apresentou interações fracas com o DNA e interações hidrofóbicas para a BSA. No ensaio de micronúcleo in vitro, o composto 9 não foi genotóxico em células V79, porém, em células tumorais HepG2 mostrou efeito genotóxico na concentração de 1,25 μmol L-1. No ensaio de micronúcleo in vivo, o composto 9 não foi genotóxico nas diferentes doses avaliadas. Em relação ao ensaio cometa, os resultados mostraram aumento na frequência de danos no DNA em hepatócitos, apenas na dose de 5,0 mg kg-1 p.c. No ensaio antitumoral in vivo, os animais tratados com 5,0 mg kg-1 p.c. do composto 9, mostraram significativa inibição do desenvolvimento tumoral em relação ao controle sem tratamento. Nas análises histopatológicas, o composto 9 também mostrou significativa inibição das mitoses em relação ao grupo controle. A maioria dos compostos avaliados neste trabalho apresentou atividade citotóxica in vitro em células tumorais, principalmente em células MCF7. O composto 9, apresentou resultados promissores nos ensaios biológicos in vitro e in vivo, sugerindo que este composto pode ser potencial candidato a quimioterápico no tratamento do câncer

    PHOTOCHEMISTRY OF RUTHENIUM NITROSYL COMPLEXES IN SOLIDS AND SOLUTIONS AND ITS POTENTIAL APPLICATIONS

    No full text
    corecore