342 research outputs found

    Secondary analyses of the randomized phase III Stop&Go study: efficacy of second-line intermittent versus continuous chemotherapy in HER2-negative advanced breast cancer

    Get PDF
    Background: Previously, we showed that reintroduction of the same (first-line) chemotherapy at progression could only partially make up for the loss in efficacy as compared to continuously delivered first-line chemotherapy. Here, we report the probability of starting second-line study chemotherapy in the Stop&Go trial, and the progression-free survival (PFS) and overall survival (OS) of patients who received both the first- and second-line treatment in an intermittent versus continuous schedule. Methods: First-line chemotherapy comprised paclitaxel plus bevacizumab, second-line capecitabine or non-pegylated liposomal doxorubicin, given per treatment line as two times four cycles (intermittent) or as eight consecutive cycles (continuous). Results: Of the 420 patients who started first-line treatment within the Stop&Go trial (210:210), a total of 270 patients continued on second-line study treatment (64% of all), which consisted of capecitabine in 201 patients and of non-pegylated liposomal doxorubicin in 69 patients, evenly distributed between the treatment arms. Median PFS was 3.7 versus 5.0 months (HR 1.07; 95% CI: 0.82–1.38) and median OS 10.9 versus 12.4 months (HR 1.27; 95% CI: 0.98–1.66) for intermittent versus continuous second

    Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs

    Get PDF
    This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy

    The influence on quality of life of intermittent scheduling in first- and second-line chemotherapy of patients with HER2-negative advanced breast cancer

    Get PDF
    Background: The Stop&Go study randomized patients with advanced breast cancer to intermittent (two times four) or continuous (eight subsequent cycles) first- and second-line chemotherapy. Methods: QoL was measured with RAND-36 questionnaires every 12 weeks. The primary objective was to estimate differences in changes from baseline between intermittent and continuous treatment. An effect size of 0.5 SD (5 points) was considered clinically meaningful. Results: A total of 398 patients were included with a median follow-up of 11.4 months (IQR 5.6–22.2). Mean physical QoL baseline scores were 38.0 resp. 38.2, and mental scores 45.0 resp. 42.4 for intermittent and continuous treatm

    Solution Equilibria of Anticancer Ruthenium(II)-(η6-p-Cymene)-Hydroxy(thio)pyr(id)one Complexes: Impact of Sulfur vs. Oxygen Donor Systems on the Speciation and Bioactivity

    Get PDF
    Stoichiometry and stability of antitumor ruthenium(II)-eta(6)-p-cymene complexes of bidentate (0,0) hydroxypyrone and (O,S) hydroxythiopyr(id)one type ligands were determined by pH-potentiometry, H-1 NMR spectroscopy and UV-Vis spectrophotometry in aqueous solution and in dependence of chloride ion concentration. Formation of mono-ligand complexes with moderate stability was found in the case of the hydroxypyrone ligands (ethyl maltol and allomaltol) predominating at the physiological pH range. These complexes decompose to the dinuclear tri-hydroxido bridged species [(Ru-II(eta(6)-p-cymene)h(OH)(3)](+) and to the metal-free ligand at basic pH values. In addition, formation of a hydroxido [Ru-II(eta(6)-p-cymene)(L)(OH)] species was found. The hydroxythiopyr(id)one ligands (thiomaltol, thioallomaltol, 3-hydroxy-1,2-dimethyl-thiopyridone) form complexes of significantly higher stability compared with the hydroxypyrones; their complexes are biologically more active, the simultaneous bi- and monodentate coordination of the ligands in the bis complexes (ML2 and ML2H) was also demonstrated. In the case of thiomaltol, formation of tris complexes is also likely at high pH. The replacement of the chlorido by the aqua ligand in the [Ru-II(eta(6)-p-cymene)(L)(CI)] species was monitored, which is an important activation step in the course of the mode of action of the complexes, facilitating binding to biological targets

    Pharmacokinetics and tissue distribution of PGG–paclitaxel, a novel macromolecular formulation of paclitaxel, in nu/nu mice bearing NCI-460 lung cancer xenografts

    Get PDF
    PGG–PTX is a water-soluble formulation of paclitaxel (PTX), made by conjugating PTX to poly(l-γ-glutamylglutamine) acid (PGG) via ester bonds, that spontaneously forms a nanoparticle in aqueous environments. The purpose of this study was to compare the pharmacokinetics and tissue distribution of PTX following injection of either free PTX or PGG–PTX in mice. Both [3H]PTX and PGG–[3H]PTX were administered as an IV bolus injection to mice bearing SC NCI-H460 lung cancer xenografts at a dose of 40-mg PTX equivalents/kg. Plasma, tumor, major organs, urine, and feces were collected at intervals out to 340 h. Total taxanes, taxane extractable into ethyl acetate, and native PTX were quantified by liquid scintillation counting and HPLC. Conjugation of PTX to the PGG polymer increased plasma and tumor C max, prolonged plasma half-life and the period of accumulation in tumor, and reduced washout from tumor. In plasma injection of PGG–PTX increased total taxane AUC0–340 by 23-fold above that attained with PTX. In tumors, it increased the total taxane by a factor of 7.7, extractable taxane by 5.7, and native PTX by a factor of 3.5-fold. Conjugation delayed and reduced total urinary and fecal excretion of total taxanes. Incorporation of PTX into the PGG–PTX polymer significantly prolonged the half-life of total taxanes, extractable taxane, and native PTX in both the plasma and tumor compartments. This resulted in a large increase in the amount of active PTX delivered to the tumor. PGG–PTX is an attractive candidate for further development

    Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes

    Get PDF
    Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl 2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η 6-bip)Os(4-CO 2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η 6-p-cym)RuCl(dap)] + (p-cym = p-cymene) (5), and [(η 6-p-cym)RuCl(imidazole-CO 2H)(PPh 3)] + (6), were synthesized by using a solid-phase approach. Conjugates 3-5 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC 50 = 63 ± 2 μ in MCF-7 cells and IC 50 = 26 ± 3 μ in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC 50 = 45 ± 2.6 μ in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically. © 2012 American Chemical Society

    Circulating endothelial cells in oncology: pitfalls and promises

    Get PDF
    Adequate blood supply is a prerequisite in the pathogenesis of solid malignancies. As a result, depriving a tumour from its oxygen and nutrients, either by preventing the formation of new vessels, or by disrupting vessels already present in the tumour, appears to be an effective treatment modality in oncology. Given the mechanism by which these agents exert their anti-tumour activity together with the crucial role of tumour vasculature in the pathogenesis of tumours, there is a great need for markers properly reflecting its impact. Circulating endothelial cells (CEC), which are thought to derive from damaged vasculature, may be such a marker. Appropriate enumeration of these cells appears to be a technical challenge. Nevertheless, first studies using validated CEC assays have shown that CEC numbers in patients with advanced malignancies are elevated compared to healthy controls making CEC a potential tool for among other establishing prognosis and therapy-induced effects. In this review, we will address the possible clinical applications of CEC detection in oncology, as well as the pitfalls encountered in this process
    corecore