27 research outputs found
Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project)
As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluated the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Jungfraujoch and Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to capture both the observed temporal trends and the magnitudes well at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice-core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores indicates a strong influence from Western Europe, but the modeled BC increases in that period are consistent with the emission changes in Eastern Europe, the Middle East, South and East Asia. At the Alps site, the simulated BC suggests a strong influence from Europe, which agrees with the Alps ice core observations. Models successfully simulate higher BC concentrations observed at Zuoqiupu during the non-monsoon season than monsoon season, but models underpredict BC in both seasons. Despite a large divergence in BC deposition at two Antarctic ice core sites, models are able to capture the relative increase from preindustrial to present-day seen in the ice cores. In 2000 relative to 1850, globally annually averaged BC surface albedo forcing from the offline simulations ranges from 0.014 to 0.019 W m−2 among the ACCMIP models. Comparing offline and online BC albedo forcings computed by some of the same models, we find that the global annual mean can vary by up to a factor of two because of different aerosol models or different BC-snow parameterizations and snow cover. The spatial distributions of the offline BC albedo forcing in 2000 show especially high BC forcing (i.e. over 0.1 W m−2) over Manchuria, Karakoram, and most of the Former USSR. Models predict the highest global annual mean BC forcing in 1980 rather than 2000, mostly driven by the high fossil fuel and biofuel emissions in the Former USSR in 1980
The Electronics and Data Acquisition System of the DarkSide Dark Matter Search
It is generally inferred from astronomical measurements that Dark Matter (DM)
comprises approximately 27\% of the energy-density of the universe. If DM is a
subatomic particle, a possible candidate is a Weakly Interacting Massive
Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for
evidence of WIMP-nuclear collisions. DS is located underground at the
Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three
active, embedded components; an outer water veto (CTF), a liquid scintillator
veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper
describes the data acquisition and electronic systems of the DS detectors,
designed to detect the residual ionization from such collisions
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Exclusive photoproduction of pi degrees up to large values of Mandelstam variables s, t, and u with CLAS
Exclusive photoproduction cross sections have been measured for the process
with the Dalitz decay final state
using tagged photon energies in the range of GeV.
The complete angular distribution of the final state , for the entire
photon energy range up to large values of and , has been measured for
the first time. The data obtained show that the cross section , at
mid to large angles, decreases with energy as . This is in
agreement with the perturbative QCD quark counting rule prediction of . Paradoxically, the size of angular distribution of measured cross sections
is greatly underestimated by the QCD based Generalized Parton Distribution
mechanism at highest available invariant energy GeV. At the same
time, the Regge exchange based models for photoproduction are more
consistent with experimental data.Comment: 7 pages, 6 figure
PM2.5 pollution in a megacity of southwest China: source apportionment and implication
Daily PM2.5 (aerosol particles with an aerodynamic diameter of less than 2.5 mu m) samples were collected at an urban site in Chengdu, an inland megacity in southwest China, during four 1-month periods in 2011, with each period in a different season. Samples were subject to chemical analysis for various chemical components ranging from major water-soluble ions, organic carbon (OC), element carbon (EC), trace elements to biomass burning tracers, anhydrosugar levoglucosan (LG), and mannosan (MN). Two models, the ISORROPIA II thermodynamic equilibrium model and the positive matrix factorization (PMF) model, were applied to explore the likely chemical forms of ionic constituents and to apportion sources for PM2.5. Distinctive seasonal patterns of PM2.5 and associated main chemical components were identified and could be explained by varying emission sources and meteorological conditions. PM2.5 showed a typical seasonality of waxing in winter and waning in summer, with an annual mean of 119 mu g m(-3). Mineral soil concentrations increased in spring, whereas biomass burning species elevated in autumn and winter. Six major source factors were identified to have contributed to PM2.5 using the PMF model. These were secondary inorganic aerosols, coal combustion, biomass burning, iron and steel manufacturing, Mo-related industries, and soil dust, and they contributed 37 +/- 18, 20 +/- 12, 11 +/- 10, 11 +/- 9, 11 +/- 9, and 10 +/- 12 %, respectively, to PM2.5 masses on annual average, while exhibiting large seasonal variability. On annual average, the unknown emission sources that were not identified by the PMF model contributed 1 +/- 11% to the measured PM2.5 mass. Various chemical tracers were used for validating PMF performance. Antimony (Sb) was suggested to be a suitable tracer of coal combustion in Chengdu. Results of LG and MN helped constrain the biomass burning sources, with wood burning dominating in winter and agricultural waste burning dominating in autumn. Excessive Fe (Ex-Fe), defined as the excessive portion in measured Fe that cannot be sustained by mineral dust, is corroborated to be a straightforward useful tracer of iron and steel manufacturing pollution. In Chengdu, Mo/Ni mass ratios were persistently higher than unity, and considerably distinct from those usually observed in ambient airs. V/Ni ratios averaged only 0.7. Results revealed that heavy oil fuel combustion should not be a vital anthropogenic source, and additional anthropogenic sources for Mo are yet to be identified. Overall, the emission sources identified in Chengdu could be dominated by local sources located in the vicinity of Sichuan, a result different from those found in Beijing and Shanghai, wherein cross-boundary transport is significant in contributing pronounced PM2.5. These results provided implications for PM2.5 control strategies.</p
Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective
PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October–4 November and 30 November–13 December). The highest PM2.5 reached 216 μg m−3 during the first high PM period and 113 μg m−3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long‐range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water‐ soluble organic carbon and sulfate, consistent with its secondary nature.</p
“Chemical characterization and source apportionment of PM2.5in Beijing: seasonal perspective” published in Atmos. Chem. Phys.,13, 7053–7074, 2013
No abstract available