119 research outputs found

    The Glial Regenerative Response to Central Nervous System Injury Is Enabled by Pros-Notch and Pros-NFκB Feedback

    Get PDF
    Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFκB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease

    Grupo de expertos del PAPPS. Recomendaciones sobre el estilo de vida

    Get PDF
    Los determinantes de salud primarios y secundarios explican gran parte de la morbimortalidad observada en atención primaria. Se presentan las recomendaciones del Programa de Actividades Preventivas y Promoción de la Salud (PAPPS) de la semFyC, para la promoción de un estilo de vida saludable mediante la metodología de intervención y las actuaciones preventivas en consumo de tabaco, consumo de alcohol, alimentación saludable, actividad física en el tiempo libre, prevención de accidentes de tráfico y sistemas de retención infantil. Se señalan las pautas más comunes de prevención clínica. Se actualizan las recomendaciones, se señalan aspectos novedosos como la definición de consumo de alcohol de bajo riesgo y se pone al día la bibliografía. Para las principales recomendaciones se incluyen tablas específicas que recogen la calidad de la evidencia y la fuerza de la recomendación. Primary and secondary health determinants explain a large part of the morbidity and mortality observed in primary care. The recommendations of the Program of Preventive Activities and Health Promotion (PAPPS) of the semFyC are presented, for the promotion of a healthy lifestyle through intervention methodology and preventive actions in tobacco consumption, alcohol consumption, healthy eating, physical activity in free time and prevention of traffic accidents and child restraint systems. The most common clinical prevention guidelines are outlined. The recommendations are updated, new aspects are pointed out, such as the definition of low-risk alcohol consumption, and the bibliography is updated. For the main recommendations, specific tables are included that show the quality of the evidence and the strength of the recommendation

    Therapeutic implications of selecting the SCORE (European) versus the D'AGOSTINO (American) risk charts for cardiovascular risk assessment in hypertensive patients

    Get PDF
    Background: No comparisons have been made of scales estimating cardiovascular mortality and overall cardiovascular morbidity and mortality. The study objectives were to assess the agreement between the Framingham-D'Agostino cardiovascular risk (CVR) scale and the chart currently recommended in Europe (SCORE) with regard to identification of patients with high CVR, and to describe the discrepancies between them and the attendant implications for the treatment of hypertension and hyperlipidaemia. Methods: A total of 474 hypertensive patients aged 40-65 years monitored in primary care were enrolled into the study. CVR was assessed using the Framingham-D'Agostino scale, which estimates the overall cardiovascular morbidity and mortality risk, and the SCORE chart, which estimates the cardiovascular mortality risk. Cardiovascular risk was considered to be high for values ≥ 20% and ≥ 5% according to the Framingham-D'Agostino and SCORE charts respectively. Kappa statistics was estimated for agreement in classification of patients with high CVR. The therapeutic recommendations in the 2007 European Guidelines on Cardiovascular Disease Prevention were followed. Results

    Detrimental NFKB1 missense variants affecting the Rel-homology domain of p105/p50

    Get PDF
    Most of the currently known heterozygous pathogenic NFKB1 (Nuclear factor kappa B subunit 1) variants comprise deleterious defects such as severe truncations, internal deletions, and frameshift variants. Collectively, these represent the most frequent monogenic cause of common variable immunodeficiency (CVID) identified so far. NFKB1 encodes the transcription factor precursor p105 which undergoes limited proteasomal processing of its C-terminal half to generate the mature NF-kappa B subunit p50. Whereas p105/p50 haploinsufficiency due to devastating genetic damages and protein loss is a well-known disease mechanism, the pathogenic significance of numerous NFKB1 missense variants still remains uncertain and/or unexplored, due to the unavailability of accurate test procedures to confirm causality. In this study we functionally characterized 47 distinct missense variants residing within the N-terminal domains, thus affecting both proteins, the p105 precursor and the processed p50. Following transient overexpression of EGFP-fused mutant p105 and p50 in HEK293T cells, we used fluorescence microscopy, Western blotting, electrophoretic mobility shift assays (EMSA), and reporter assays to analyze their effects on subcellular localization, protein stability and precursor processing, DNA binding, and on the RelA-dependent target promoter activation, respectively. We found nine missense variants to cause harmful damage with intensified protein decay, while two variants left protein stability unaffected but caused a loss of the DNA-binding activity. Seven of the analyzed single amino acid changes caused ambiguous protein defects and four variants were associated with only minor adverse effects. For 25 variants, test results were indistinguishable from those of the wildtype controls, hence, their pathogenic impact remained elusive. In summary, we show that pathogenic missense variants affecting the Rel-homology domain may cause protein-decaying defects, thus resembling the disease-mechanisms of p105/p50 haploinsufficiency or may cause DNA-binding deficiency. However, rare variants (with a population frequency of less than 0.01%) with minor abnormalities or with neutral tests should still be considered as potentially pathogenic, until suitable tests have approved them being benign.Peer reviewe

    NF-κB/Rel-Mediated Regulation of the Neural Fate in Drosophila

    Get PDF
    Two distinct roles are described for Dorsal, Dif and Relish, the three NF-κB/Rel proteins of Drosophila, in the development of the peripheral nervous system. First, these factors regulate transcription of scute during the singling out of sensory organ precursors from clusters of cells expressing the proneural genes achaete and scute. This effect is possibly mediated through binding sites for NF-κB/Rel proteins in a regulatory module of the scute gene required for maintenance of scute expression in precursors as well as repression in cells surrounding precursors. Second, genetic evidence suggests that the receptor Toll-8, Relish, Dif and Dorsal, and the caspase Dredd pathway are active over the entire imaginal disc epithelium, but Toll-8 expression is excluded from sensory organ precursors. Relish promotes rapid turnover of transcripts of the target genes scute and asense through an indirect, post-transcriptional mechanism. We propose that this buffering of gene expression levels serves to keep the neuro-epithelium constantly poised for neurogenesis

    A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, <it>snpf</it>, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the <it>snpf </it>gene and its peptide products in the central nervous system (CNS) of <it>Drosophila </it>in relation to other neuronal markers.</p> <p>Results</p> <p>There are several hundreds of neurons in the larval CNS and several thousands in the adult <it>Drosophila </it>brain expressing <it>snpf </it>transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7).</p> <p>Conclusion</p> <p>It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator/co-transmitter in various CNS circuits, including olfactory circuits both at the level of the first synapse and at the mushroom body output level. Some of the sNPF immunoreactive axons terminate in close proximity to neurosecretory cells producing ILPs and adipokinetic hormone, indicating that sNPF also might regulate hormone production or release.</p

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Identification of Neural Outgrowth Genes using Genome-Wide RNAi

    Get PDF
    While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new genes that have important functions in the nervous system

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
    corecore