13 research outputs found

    Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7

    Get PDF
    Cronobacter sakazakii and Escherichia coli O157:H7 are well known food-borne pathogens that can cause severe disease. The identification of new alternatives to heating to control these pathogens in foods, while reducing the impact on organoleptic properties and nutritional value, is highly desirable. In this study, nisin and its bioengineered variants, nisin V and nisin S29A, are used alone, or in combination with plant essential oils (thymol, carvacrol and trans-cinnamaldehyde) or citric acid, with a view to controlling C. sakazakii and E. coli O157:H7 in laboratory-based assays and model food systems. The use of nisin variants (30 μM) with low concentrations of thymol (0.015%), carvacrol (0.03%) and trans-cinnamaldehyde (0.035%) resulted in extended lag phases of growth compared to those for corresponding nisin A-essential oil combinations. Furthermore, nisin variants (60 μM) used in combination with carvacrol (0.03%) significantly reduced viable counts of E. coli O157:H7 (3-log) and C. sakazakii (4-log) compared to nisin A-carvacrol treatment. Importantly, this increased effectiveness translated into food. More specifically, sub-inhibitory concentrations of nisin variants and carvacrol caused complete inactivation of E. coli O157:H7 in apple juice within 3 h at room temperature compared to that of the equivalent nisin A combination. Furthermore, combinations of commercial Nisaplin and the food additive citric acid reduced C. sakazakii numbers markedly in infant formula within the same 3 h period. These results highlight the potential benefits of combining nisin and variants thereof with carvacrol and/or citric acid for the inhibition of Gram negative food-borne pathogens

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Bioengineering strategies to improve functional qualities of nisin

    No full text
    The abuse of antibiotics and the emergence of multi-drug resistant bacterial strains have created the need to explore alternative methods of controlling microbial pathogens. The bacteriocin family of antimicrobial peptides has been proposed as one such alternative to classic antibiotics. Nisin A belongs to the subgroup of bacteriocins called the lantibiotics, which contain several unusual amino acids as a consequence of enzyme-mediated post-translational modifications. As nisin is produced by generally regarded as safe (GRAS) microorganisms, it could potentially be applied in a clinical setting. However, as lantibiotics are naturally produced in such small quantities, this can hinder their industrial potential. In order to overcome this, several approaches can be utilised. For example, given the gene encoded nature of lantibiotics, genetic engineering approaches can be implemented in order to yield variants with enhanced properties. Here, the use of mutagenesis-based strategies was employed to obtain a derivative of nisin with enhanced bioactivity in vitro. Investigations with purified peptide highlighted the enhanced specific activity of this variant, nisin M21V, against food-borne Listeria monocytogenes strains. Furthermore, this specific enhanced bioactivity was evident in a mouse model of listeriosis. Reductions in bioluminescence and microbial counts in organs from infected mice were observed following treatment with nisin M21V compared to that of wild-type nisin A. Peptide bioengineering approaches were also implemented to obtain additional novel derivatives of nisin. The generation of “S5X” and “S33X” banks (representing a change of natural serines at positions 5 and 33 to all possible alternative residues) by a combination of site-saturation and site-directed mutagenesis led to the identification of several derivatives exhibiting improved stability. This allowed the rational design of variants with enhanced stability compared to that of wild type nisin. Another means of tackling issues associated with lantibiotic yield is to combine lantibiotics with other antimicrobials. This could circumvent the need for enhanced production while also reducing concentrations of the peptide antimicrobials. We observed that combinations of nisin variants and low levels of plant essential oils (thymol, carvacrol, trans-cinnamaldehyde) significantly controlled Gram negative foodborne pathogens in in vitro assays compared to nisin A-essential oil combinations. This enhanced control was also evident in model food systems. Nisin variants used in conjunction with carvacrol significantly reduced numbers of E. coli O157:H7 in apple juice while a commercial nisin preparation used in combination with citric acid significantly controlled C. sakazakii in infant milk formula. It is noteworthy that while nisin is generally associated with Gram positive targets, upon combination with plant essential oils the spectrum of inhibition was broadened to Gram negative targets

    Timing and volume of crystalloid and blood products in pediatric trauma: An Eastern Association for the Surgery of Trauma multicenter prospective observational study

    No full text
    Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved. BACKGROUND The purpose of this study was to determine the relationship between timing and volume of crystalloid before blood products and mortality, hypothesizing that earlier transfusion and decreased crystalloid before transfusion would be associated with improved outcomes. METHODS A multi-institutional prospective observational study of pediatric trauma patients younger than 18 years, transported from the scene of injury with elevated age-adjusted shock index on arrival, was performed from April 2018 to September 2019. Volume and timing of prehospital, emergency department, and initial admission resuscitation were assessed including calculation of 20 ± 10 mL/kg crystalloid boluses overall and before transfusion. Multivariable Cox proportional hazards and logistic regression models identified factors associated with mortality and extended intensive care, ventilator, and hospital days. RESULTS In 712 children at 24 trauma centers, mean age was 7.6 years, median (interquartile range) Injury Severity Score was 9 (2-20), and in-hospital mortality was 5.3% (n = 38). There were 311 patients(43.7%) who received at least one crystalloid bolus and 149 (20.9%) who received blood including 65 (9.6%) with massive transfusion activation. Half (53.3%) of patients who received greater than one crystalloid bolus required transfusion. Patients who received blood first (n = 41) had shorter median time to transfusion (19.8 vs. 78.0 minutes, p = 0.005) and less total fluid volume (50.4 vs. 86.6 mL/kg, p = 0.033) than those who received crystalloid first despite similar Injury Severity Score (median, 22 vs. 27, p = 0.40). On multivariable analysis, there was no association with mortality (p = 0.51); however, each crystalloid bolus after the first was incrementally associated with increased odds of extended ventilator, intensive care unit, and hospital days (all p \u3c 0.05). Longer time to transfusion was associated with extended ventilator duration (odds ratio, 1.11; p = 0.04). CONCLUSION Resuscitation with greater than one crystalloid bolus was associated with increased need for transfusion and worse outcomes including extended duration of mechanical ventilation and hospitalization in this prospective study. These data support a crystalloid-sparing, early transfusion approach for resuscitation of injured children. LEVEL OF EVIDENCE Therapeutic, level IV

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%(1), much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factorSP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore