57 research outputs found

    Levels of attention and task difficulty in the modulation of interval duration mismatch negativity

    Get PDF
    Time perception has been described as a fundamental skill needed to engage in a number of higher level cognitive processes essential to successfully navigate everyday life (e.g., planning, sequencing, etc.) Temporal processing is often thought of as a basic neural process that impacts a variety of other cognitive processes. Others, however, have argued that timing in the brain can be affected by a number of variables such as attention and motivation. In an effort to better understand timing in the brain at a basic level with minimal attentional demands, researchers have often employed use of the mismatch negativity (MMN). MMN, specifically duration MMN (dMMN) and interval MMN (iMMN) have been popular methods for studying temporal processing in populations for which attention or motivation may be an issue (e.g., clinical populations, early developmental studies). There are, however, select studies which suggest that attention may in fact modify both temporal processing in general and the MMN event-related potential. It is unclear the degree to which attention affects MMN or whether the effects differ depending on the complexity or difficulty of the MMN paradigm. The iMMN indexes temporal processing and is elicited by introducing a deviant interval duration amid a series of standards. A greater degree of difference in the deviant from the standard elicits a heightened iMMN. Unlike past studies, in which attention was intentionally directed toward a closed-captioned move, the current study had participants partake in tasks involving varying degrees of attention (passive, low, and high) with varying degrees of deviants (small, medium, and large) to better understand the role of attention on the iMMN and to assess whether level of attention paired with changes in task difficulty differentially influence the iMMN electrophysiological responses. Data from 19 subjects were recorded in an iMMN paradigm. The amplitude of the iMMN waveform showed an increase with attention, particularly for intervals that were the most distinct from a standard interval (p < 0.02). Results suggest that the role of attention on the iMMN is complex. Both the degree of attention paid as well as the level of difficulty of the MMN task likely influence the neuronal response within a timing network. These results suggest that electrophysiological perception of time is modified by attention and that the design of the iMMN study is critical to minimize the possible confounding effects of attention. In addition, the implications of these results for future studies assessing interval duration-based MMN in clinical populations is also addressed

    Emerging Disease Burdens and the Poor in Cities of the Developing World

    Get PDF
    Patterns of future urban growth, combined with advances in the treatment of traditional scourges of communicable diseases, will cause a shift in the burden of disease toward category 2 (noncommunicable) and 3 (injury) conditions over the next 30 years. Communicable diseases, particularly HIV/AIDs, will continue to be the most important killers among the poor. However, new risks will emerge for several reasons. First, the marked sprawl of cities in the developing world will make access to care more difficult. Second, increasing motor vehicles and the likelihood of inadequate infrastructure will make air pollution and accidents in road traffic more common than in the past. Third, impoverished urban populations have already shown a propensity toward undernourishment, and its obverse, obesity, is already emerging as a major risk. Also, the large projected increase in slums suggests that violence and homicide will become a more important burden of health, and very large hazards will be created by fire-prone, insubstantial dwellings that will house nearly two billion people by 2030. In addition, decentralized governance will exacerbate the tensions and discontinuities that have plagued the management of health issues on the urban fringe over the past decade. Accordingly, public health agencies will need to adjust to the regional and country-specific factors to address the changing profile of risk. This analysis suggests that four factors – levels of poverty, speed of city growth, sprawl in cities, and degree of decentralization – will have importance in shaping health strategies. These factors vary in pace and intensity by region, suggesting that health care strategies for Category II and III conditions will need to be differentiated by region of the world. Also, interventions will have to rely increasingly on actors outside the ranks of public health specialists

    A horizon scan of priorities for coastal marine microbiome research

    Get PDF
    Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microbes in ecosystem function. This is particularly relevant in ocean environments, where microbes constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate the Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (e.g. fisheries, water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the ‘microbiome’) and their hosts or environment – termed the ‘holobiont’. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here we evaluated the current state of knowledge on coastal marine microbiome research and identified key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research

    A horizon scan of priorities for coastal marine microbiome research

    Get PDF
    Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microbes in ecosystem function. This is particularly relevant in ocean environments, where microbes constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate the Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (e.g. fisheries, water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the ‘microbiome’) and their hosts or environment – termed the ‘holobiont’. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here we evaluated the current state of knowledge on coastal marine microbiome research and identified key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research

    Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels

    Get PDF
    Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7x10(-9) at rs8018720 in SEC23A, and P = 1.9x10(-14) at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.Peer reviewe

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust

    Association of vitamin D status with arterial blood pressure and hypertension risk : a mendelian randomisation study

    Get PDF
    Peer reviewe
    corecore