88 research outputs found

    Dynamic arrest in charged colloidal systems exhibiting large-scale structural heterogeneities

    Get PDF
    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics

    Accounting for effective interactions among charged microgels

    Get PDF
    We introduce a theoretical approach to describe structural correlations among charged permeable spheres at finite particle concentrations. This theory explicitly accounts for correlations among microions and between microions and macroions and allows for the proposal of an effective interaction among macroions that successfully captures structural correlations observed in poly- N -isopropyl acrylamide microgel systems. In our description the bare charge is fixed and independent of the microgel size, the microgel concentration, and the ionic strength, which contrasts with results obtained using linear response approximations, where the bare charge needs to be adapted to properly account for microgel correlations obtained at different conditions

    Multidisciplinary Prehabilitation and Postoperative Rehabilitation for Avoiding Complications in Patients Undergoing Resection of Colon Cancer: Rationale, Design, and Methodology of the ONCOFIT Study

    Get PDF
    ONCOFIT is a randomized clinical trial with a two-arm parallel design aimed at determining the influence of a multidisciplinary Prehabilitation and Postoperative Program (PPP) on post-surgery complications in patients undergoing resection of colon cancer. This intervention will include supervised physical exercise, dietary behavior change, and psychological support comparing its influence to the standard care. Primary and secondary endpoints will be assessed at baseline, at preoperative conditions, at the end of the PPP intervention (after 12 weeks) and 1-year post-surgery, and will include: post-surgery complications (primary endpoint); prolonged hospital length of stay; readmissions and emergency department call within 1-year after surgery; functional capacity; patient reported outcome measures targeted; anthropometry and body composition; clinical/tumor parameters; physical activity levels and sedentariness; dietary habits; other unhealthy habits; sleep quality; and fecal microbiota diversity and composition. Considering the feasibility of the present intervention in a real-life scenario, ONCOFIT will contribute to the standardization of a cost-effective strategy for preventing and improving health-related consequences in patients undergoing resection of colon cancer with an important clinical and economic impact, not only in the scientific community, but also in clinical practice.This study was funded by the University of Granada, Plan Propio de Investigación 2016-Excellence actions: Unit of Excellence on Exercise and Health (UCEES). P.C. was supported by the Margarita Salas postdoctoral grant, convened by de University of the Basque Country (UPV/EHU), funded by the Ministry of Universities of Spain and the European Union-Next Generation EU

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    Synthesis and characterization of new polyaniline/nanotube composites

    Get PDF
    New polyaniline/nanotube (PANI/NT) composites have been synthesized by “in situ” polymerization processes using both multi-wall carbon nanotubes (MWNTs) and single-wall carbon nanotubes (SWNTs) in concentrations ranging from 2 to 50 wt.%. Although no structural changes are observed using MWNTs above a concentration of 20 wt.%, the in situ synthesis results in electronic interactions between nanotubes and the quinoid ring of PANI leading to enhanced electronic properties and thus to the formation of a genuine PANI/MWNT composite material. On the other hand, using SWNTs favors the formation of inhomogeneous mixtures rather than of a homogeneous composite materials, independent of the SWNT concentration. X-ray diffraction, Raman and transport measurements show the different behavior of both classes of nanotubes in PANI/NT materials. The difficulties in the formation of a true PANI/SWNT composite are related to the far more complex structure of the SWNT material itself, i.e. to the presence of entangled bundles of SWNTs, amorphous carbon and even catalytic metal particles.This work was supported by the EC RTN contract NANOCOMP (HPRN-CT-2000-00037).Peer reviewe

    Treatment of Diabetes and Long-Term Survival After Insulin and Glucokinase Gene Therapy

    Get PDF
    Diabetes is associated with severe secondary complications, largely caused by poor glycemic control. Treatment with exogenous insulin fails to prevent these complications completely, leading to significant morbidity and mortality. We previously demonstrated that it is possible to generate a "glucose sensor" in skeletal muscle through coexpression of glucokinase and insulin, increasing glucose uptake and correcting hyperglycemia in diabetic mice. Here, we demonstrate long-term efficacy of this approach in a large animal model of diabetes. A one-time intramuscular administration of adeno-associated viral vectors of serotype 1 encoding for glucokinase and insulin in diabetic dogs resulted in normalization of fasting glycemia, accelerated disposal of glucose after oral challenge, and no episodes of hypoglycemia during exercise for >4 years after gene transfer. This was associated with recovery of body weight, reduced glycosylated plasma proteins levels, and long-term survival without secondary complications. Conversely, exogenous insulin or gene transfer for insulin or glucokinase alone failed to achieve complete correction of diabetes, indicating that the synergistic action of insulin and glucokinase is needed for full therapeutic effect. This study provides the first proof-of-concept in a large animal model for a gene transfer approach to treat diabetes

    GWAS for Systemic Sclerosis Identifies Multiple Risk Loci and Highlights Fibrotic and Vasculopathy Pathways

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.Funding: This work was supported by Spanish Ministry of Economy and Competitiveness (grant ref. SAF2015-66761-P), Consejeria de Innovacion, Ciencia y Tecnologia, Junta de Andalucía (P12-BIO-1395), Ministerio de Educación, Cultura y Deporte through the program FPU, Juan de la Cierva fellowship (FJCI-2015-24028), Red de Investigación en Inflamación y Enfermadades Reumaticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013), and Scleroderma Research Foundation and NIH P50-HG007735 (to H.Y.C.). H.Y.C. is an Investigator of the Howard Hughes Medical Institute. PopGen 2.0 is supported by a grant from the German Ministry for Education and Research (01EY1103). M.D.M and S.A. are supported by grant DoD W81XWH-18-1-0423 and DoD W81XWH-16-1-0296, respectively

    Cross-disease Meta-analysis of Genome-wide Association Studies for Systemic Sclerosis and Rheumatoid Arthritis Reveals IRF4 as a New Common Susceptibility Locus

    Get PDF
    Objectives: Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that share clinical and immunological characteristics. To date, several shared SSc- RA loci have been identified independently. In this study, we aimed to systematically search for new common SSc-RA loci through an inter-disease meta-GWAS strategy. Methods: We performed a meta-analysis combining GWAS datasets of SSc and RA using a strategy that allowed identification of loci with both same-direction and opposingdirection allelic effects. The top single-nucleotide polymorphisms (SNPs) were followed-up in independent SSc and RA case-control cohorts. This allowed us to increase the sample size to a total of 8,830 SSc patients, 16,870 RA patients and 43,393 controls. Results: The cross-disease meta-analysis of the GWAS datasets identified several loci with nominal association signals (P-value < 5 x 10-6), which also showed evidence of association in the disease-specific GWAS scan. These loci included several genomic regions not previously reported as shared loci, besides risk factors associated with both diseases in previous studies. The follow-up of the putatively new SSc-RA loci identified IRF4 as a shared risk factor for these two diseases (Pcombined = 3.29 x 10-12). In addition, the analysis of the biological relevance of the known SSc-RA shared loci pointed to the type I interferon and the interleukin 12 signaling pathways as the main common etiopathogenic factors. Conclusions: Our study has identified a novel shared locus, IRF4, for SSc and RA and highlighted the usefulness of cross-disease GWAS meta-analysis in the identification of common risk loci
    corecore