6 research outputs found

    Soybean Seed Extracts Preferentially Express Genomic Loci of Bradyrhizobium japonicum in the Initial Interaction with Soybean, Glycine max (L.) Merr

    Get PDF
    Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 µM), nevertheless SSE-supplemented medium contained 4.7 µM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis

    Rhizobium etli HrpW is a pectin-degrading enzyme and differs from phytopathogenic homologues in enzymically crucial tryptophan and glycine residues.

    No full text
    While establishing a nitrogen-fixing symbiosis with leguminous plants, rhizobia are faced with the problem of penetrating the plant cell wall at several stages of the infection process. One of the major components of this barrier is pectin, a heteropolysaccharide composed mainly of galacturonic acid subunits. So far, no enzymes capable of degrading pectin have been isolated from rhizobia. Here, we make an inventory of rhizobial candidate pectinolytic enzymes based on available genome sequence data and present an initial biochemical and functional characterization of a protein selected from this list. Rhizobium etli hrpW is associated with genes encoding a type III secretion system, a macromolecular structure that allows bacteria to directly inject so-called effector proteins into a eukaryotic host's cell cytosol and an essential virulence determinant of many Gram-negative pathogenic bacteria. In contrast to harpin HrpW from phytopathogens, R. etli HrpW possesses pectate lyase activity and is most active on highly methylated substrates. Through comparative sequence analysis, three amino acid residues crucial for the observed enzymic activity were identified: Trp192, Gly212 and Gly213. Their importance was confirmed by site-directed mutagenesis and biochemical characterization of the resulting proteins, with the tryptophan mutant showing no detectable pectate lyase activity and the double-glycine mutant's activity reduced by about 80 %. Surprisingly, despite hrpW expression being induced specifically on the plant root surface, a knockout mutation of the gene does not appear to affect symbiosis with the common bean Phaseolus vulgaris.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore