260 research outputs found

    Sequential Attack with Intensity Modulation on the Differential-Phase-Shift Quantum Key Distribution Protocol

    Get PDF
    In this paper, we discuss the security of the differential-phase-shift quantum key distribution (DPSQKD) protocol by introducing an improved version of the so-called sequential attack, which was originally discussed by Waks et al. Our attack differs from the original form of the sequential attack in that the attacker Eve modulates not only the phases but also the amplitude in the superposition of the single-photon states which she sends to the receiver. Concentrating especially on the "discretized gaussian" intensity modulation, we show that our attack is more effective than the individual attack, which had been the best attack up to present. As a result of this, the recent experiment with communication distance of 100km reported by Diamanti et al. turns out to be insecure. Moreover it can be shown that in a practical experimental setup which is commonly used today, the communication distance achievable by the DPSQKD protocol is less than 95km.Comment: 6 pages, 2 figure

    Advantage of the key relay protocol over secure network coding

    Full text link
    The key relay protocol (KRP) plays an important role in improving the performance and the security of quantum key distribution (QKD) networks. On the other hand, there is also an existing research field called secure network coding (SNC), which has similar goal and structure. We here analyze differences and similarities between the KRP and SNC rigorously. We found, rather surprisingly, that there is a definite gap in security between the KRP and SNC; that is, certain KRPs achieve better security than any SNC schemes on the same graph. We also found that this gap can be closed if we generalize the notion of SNC by adding free public channels; that is, KRPs are equivalent to SNC schemes augmented with free public channels.Comment: 10 pages, 11 figure

    Implementable Quantum Bit-String Commitment Protocol

    Full text link
    Quantum bit-string commitment[A.Kent, Phys.Rev.Lett., 90, 237901 (2003)] or QBSC is a variant of bit commitment (BC). In this paper, we propose a new QBSC protocol that can be implemented using currently available technology, and prove its security under the same security criteria as discussed by Kent. QBSC is a generalization of BC, but has slightly weaker requirements, and our proposed protocol is not intended to break the no-go theorem of quantum BC.Comment: To appear in Phys. Rev. A., 9 pages, 2 figure
    corecore