106 research outputs found

    The hidden map of science: Pre-publication history of articles tells us that rejection leads to higher citations

    Get PDF
    No-one wants to have their paper rejected by a top journal, but is there a silver lining to an initial disappointment? Vincent Calcagno finds that papers that are resubmitted to a second or third choice journal enjoy a ‘benefit of rejection’ and are more likely to receive a higher number of citations when published

    glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models

    Get PDF
    We introduce <b>glmulti</b>, an <b>R</b> package for automated model selection and multi-model inference with glm and related functions. From a list of explanatory variables, the provided function glmulti builds all possible unique models involving these variables and, optionally, their pairwise interactions. Restrictions can be specified for candidate models, by excluding specific terms, enforcing marginality, or controlling model complexity. Models are fitted with standard <b>R</b> functions like glm. The n best models and their support (e.g., (Q)AIC, (Q)AICc, or BIC) are returned, allowing model selection and multi-model inference through standard <b>R</b> functions. The package is optimized for large candidate sets by avoiding memory limitation, facilitating parallelization and providing, in addition to exhaustive screening, a compiled genetic algorithm method. This article briefly presents the statistical framework and introduces the package, with applications to simulated and real data

    Non-target effects of ten essential oils on the egg parasitoid Trichogramma evanescens

    Get PDF
    Essential oils (EOs) are increasingly used as biopesticides due to their insecticidal potential. This study addresses their non-target effects on a biological control agent: the egg parasitoid Trichogramma evanescens. In particular, we tested whether EOs affected parasitoid fitness either directly, by decreasing pre-imaginal survival, or indirectly, by disrupting parasitoids' orientation abilities. The effect of Anise, Fennel, Sweet orange, Basil, Coriander, Oregano, Peppermint, Mugwort, Rosemary and Thyme EOs were studied on five strains of T. evanescens. Specific experimental setups were developed, and data obtained from image analysis were interpreted with phenomenological models fitted with Bayesian inference. Results highlight the fumigant toxicity of EOs on parasitoid development. Anise, Fennel, Basil, Coriander, Oregano, Peppermint and Thyme EOs are particularly toxic and drastically reduce the emergence rate of T. evanescens. Most EOs also affect parasitoid behavior: (i) Basil, Coriander, Oregano, Peppermint, Mugwort and Thyme EOs are highly repellent for naive female parasitoids; (ii) Anise and Fennel EOs can have repellent or attractive effects depending on strains; and (iii) Sweet orange, Oregano and Rosemary EOs have no detectable impact on orientation behavior. This study shows that EOs fumigation have non-target effects on egg parasitoids. This highlights the need to cautiously precise the deployment framework of biopesticides in an agroecological perspective

    Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation

    Get PDF
    The abundance of the human intestinal symbiont Akkermansia muciniphila has found to be inversely correlated with several diseases, including metabolic syndrome and obesity. A.muciniphila is known to use mucin as sole carbon and nitrogen source. To study the physiology and the potential for therapeutic applications of this bacterium, we designed a defined minimal medium. The composition of the medium was based on the genome-scale metabolic model of A.muciniphila and the composition of mucin. Our results indicate that A.muciniphila does not code for GlmS, the enzyme that mediates the conversion of fructose-6-phosphate (Fru6P) to glucosamine-6-phosphate (GlcN6P), which is essential in peptidoglycan formation. The only annotated enzyme that could mediate this conversion is Amuc-NagB on locus Amuc_1822. We found that Amuc-NagB was unable to form GlcN6P from Fru6P at physiological conditions, while it efficiently catalyzed the reverse reaction. To overcome this inability, N-acetylglucosamine needs to be present in the medium for A.muciniphila growth. With these findings, the genome-scale metabolic model was updated and used to accurately predict growth of A.muciniphila on synthetic media. The finding that A.muciniphila has a necessity for GlcNAc, which is present in mucin further prompts the adaptation to its mucosal niche.Peer reviewe

    Mutational analysis of the Aspergillus ambient pH receptor PalH underscores its potential as a target for antifungal compounds.

    Get PDF
    The pal/RIM ambient pH signalling pathway is crucial for the ability of pathogenic fungi to infect hosts. The Aspergillus nidulans 7-TMD receptor PalH senses alkaline pH, subsequently facilitating ubiquitination of the arrestin PalF. Ubiquitinated PalF triggers downstream signalling events. The mechanism(s) by which PalH transduces the alkaline pH signal to PalF is poorly understood. We show that PalH is phosphorylated in a signal dependent manner, resembling mammalian GPCRs, although PalH phosphorylation, in contrast to mammalian GPCRs, is arrestin dependent. A genetic screen revealed that an ambient-exposed region comprising the extracellular loop connecting TM4-TM5 and ambient-proximal residues within TM5 is required for signalling. In contrast, substitution by alanines of four aromatic residues within TM6 and TM7 results in a weak 'constitutive' activation of the pathway. Our data support the hypothesis that PalH mechanistically resembles mammalian GPCRs that signal via arrestins, such that the relative positions of individual helices within the heptahelical bundle determines the Pro316-dependent transition between inactive and active PalH conformations, governed by an ambient-exposed region including critical Tyr259 that potentially represents an agonist binding site. These findings open the possibility of screening for agonist compounds stabilizing the inactive conformation of PalH, which might act as antifungal drugs against ascomycetes

    Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling.

    Get PDF
    The Aspergillus pal pathway hijacks ESCRT proteins into ambient pH signalling complexes. We show that components of ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III are nearly essential for growth, precluding assessment of null mutants for pH signalling or trafficking. This severely debilitating effect is rescued by loss-of-function mutations in two cation tolerance genes, one of which, sltA, encodes a transcription factor whose inactivation promotes hypervacuolation. Exploiting a conditional expression sltA allele, we demonstrate that deletion of vps27 (ESCRT-0), vps23 (ESCRT-I), vps36 (ESCRT-II), or vps20 or vps32 (both ESCRT-III) leads to numerous small vacuoles, a phenotype also suppressed by SltA downregulation. This situation contrasts with normal vacuoles and vacuole-associated class E compartments seen in Saccharomyces cerevisiae ESCRT null mutants. Exploiting the suppressor phenotype of sltA− mutations, we establish that Vps23, Vps36, Vps20 and Vps32 are essential for pH signalling. Phosphatidylinositol 3-phosphate-recognising protein Vps27 (ESCRT-0) is not, consistent with normal pH signalling in rabB null mutants unable to recruit Vps34 kinase to early endosomes. In contrast to the lack of pH signalling in the absence of Vps20 or Vps32, detectable signalling occurs in the absence of ESCRT-III subunit Vps24. Our data support a model in which certain ESCRT proteins are recruited to the plasma membrane to mediate pH signalling

    Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus : implications for seizure susceptibility

    Get PDF
    Tumor necrosis factor (TNF)-alpha is a proinflammatory cytokine acting on two distinct receptor subtypes, namely p55 and p75 receptors. TNF-alpha p55 and p75 receptor knockout mice were previously shown to display a decreased or enhanced susceptibility to seizures, respectively, suggesting intrinsic modifications in neuronal excitability. We investigated whether alterations in glutamate system function occur in these naive knockout mice with perturbed cytokine signaling that could explain their different propensity to develop seizures. Using Western blot analysis of hippocampal homogenates, we found that p55(-/-) mice have decreased levels of membrane GluR3 and NR1 glutamate receptor subunits while GluR1, GluR2, GluR6/7 and NR2A/B were unchanged as compared to wild-type mice. In p75(-/-) mice, GluR2, GluR3, GluR6/7 and NR2A/B glutamate receptor subunits were increased in the hippocampus while GluR1 and NR1 did not change. Extracellular single-cell recordings of the electrical activity of hippocampal neurons were carried out in anesthetized mice by standard electrophysiological techniques. Microiontophoretic application of glutamate increased the basal firing rate of hippocampal neurons in p75(-/-) mice versus wild-type mice, and this effect was blocked by 2-amino-5-phosphopentanoic acid and 6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione denoting the involvement of N-methyl-D-aspartic acid and AMPA receptors. In p55(-/-) mice, hippocampal neurons responses to glutamate were similar to wild-type mice. Spontaneous glutamate release measured by in vivo hippocampal microdialysis was significantly decreased only in p55(-/-) mice. No changes were observed in KCl-induced glutamate release in both receptor knockout mice strains versus wild-type mice. These findings highlight specific molecular and functional interactions between p55 and p75 receptor-mediated signaling and the glutamate system. These interactions may be relevant for controlling neuronal excitability in physiological and pathological conditions.peer-reviewe

    Candida glabrata : a review of its features and resistance

    Get PDF
    Candida species belong to the normal microbiota of the oral cavity and gastrointestinal and vaginal tracts, and are responsible for several clinical manifestations, from mucocutaneous overgrowth to bloodstream infections. Once believed to be non-pathogenic, Candida glabrata was rapidly blamable for many human diseases. Year after year, these pathological circumstances are more recurrent and problematic to treat, especially when patients reveal any level of immunosuppression. These difficulties arise from the capacity of C. glabrata to form biofilms and also from its high resistance to traditional antifungal therapies. Thus, this review intends to present an excerpt of the biology, epidemiology, and pathology of C. glabrata, and detail an approach to its resistance mechanisms based on studies carried out up to the present.The authors are grateful to strategic project PTDC/SAU-MIC/119069/2010 for the financial support to the research center and for Celia F. Rodrigues' grant
    corecore