49 research outputs found

    Optimal opportunistic screening of atrial fibrillation using pulse palpation in cardiology outpatient clinics: Who and how

    Full text link
    Atrial fibrillation (AF) remain a prevalent undiagnosed condition frequently encountered in primary care.We aimed to find the parameters that optimize the diagnostic accuracy of pulse palpation to detect AF. We also aimed to create a simple algorithm for selecting which individuals would benefit from pulse palpation and, if positive, receive an ECG to detect AF.Nurses from four Cardiology outpatient clinics palpated 7,844 pulses according to a randomized list of arterial territories and durations of measure and immediately followed by a 12-lead ECG, which we used as the reference standard. We calculated the sensitivity and specificity of the palpation parameters. We also assessed whether diagnostic accuracy depended on the nurse's experience or on a list of clinical factors of the patients. With this information, we estimated the positive predictive values and false omission rates according to very few clinical factors readily available in primary care (age, sex, and diagnosis of heart failure) and used them to create the algorithm.The parameters associated with the highest diagnostic accuracy were palpation of the radial artery and classifying as irregular those palpations in which the nurse was uncertain about pulse regularity or unable to palpate pulse (sensitivity = 79%; specificity = 86%). Specificity decreased with age. Neither the nurse's experience nor any investigated clinical factor influenced diagnostic accuracy. We provide the algorithm to select the ≥40 years old individuals that would benefit from a pulse palpation screening: a) do nothing in <60 years old individuals without heart failure; b) do ECG in ≥70 years old individuals with heart failure; c) do radial pulse palpation in the remaining individuals and do ECG if the pulse is irregular or you are uncertain about its regularity or unable to palpate it.Opportunistic screening for AF using optimal pulse palpation in candidate individuals according to a simple algorithm may have high effectiveness in detecting AF in primary care

    Pedagogic Content Knowledge (PCK) in university Biotechnology teaching. The microbial specific growth rate (μ) case

    Get PDF
    En este trabajo se presenta un análisis de las ideas relacionadas al concepto de velocidad específica de crecimiento microbiano (μ) que presentaron estudiantes universitarios que cursaban la orientación en biotecnología del último año de la carrera de Bioquímica (Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina). El estudio se realizó en base a las respuestas que dieron los estudiantes, de manera anónima,  frente a la solicitud espontanea de que explicaran qué entendían por μ. El análisis se focalizó en la identificación de los factores que podrían relacionarse con las ideas que mostraron los estudiantes, entre las que se el tratamiento previo del concepto, la tendencia a la reducción funcional, el pragmatismo y la posibilidad de que se trate de concepciones alternativas pero en un campo muy específico y aplicado de las ciencias como es la biotecnología. Se plantean estrategias aplicadas para la reconstrucción del concepto de μ considerando estos factores. Las experiencias y conclusiones que surgen de este trabajo pretenden contribuir al desarrollo del conocimiento didáctico del contenido (CDC) en ciencias aplicadas en general, y para la biotecnología en particular.In this work, a study based on the university student’s conception about microbial specific growth rate (μ) is presented. The study was focused on last year students of the Biochemist career (Buenos Aires University, Argentina). It was developed considering the answers given anonymously by the students when they were spontaneously asked about the meaning of μ. The analysis was focused in the identification of factors which could be related with the students´ ideas about μ, such as the previous work with the subject, the tendency to the functional reduction, the pragmatisms and the possibility of alternative conceptions, but related with a specific field of applied sciences, such as biotechnology. Strategies aiming to the reconstruction of the μ concept were proposed considering these factors. The experiences presented in this work will contribute to the development of the Pedagogical Content Knowledge (PCK) in applied sciences, particularly in biotechnology.Fil: Ruberto, Lucas Adolfo Mauro. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Mac Cormack, Walter P.. Universidad de Buenos Aires; ArgentinaFil: Calabró López, Roberto Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Rodriguez Talou, Julian. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin

    Project FIT: Rationale, design and baseline characteristics of a school- and community-based intervention to address physical activity and healthy eating among low-income elementary school children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes Project FIT, a collaboration between the public school system, local health systems, physicians, neighborhood associations, businesses, faith-based leaders, community agencies and university researchers to develop a multi-faceted approach to promote physical activity and healthy eating toward the general goal of preventing and reducing childhood obesity among children in Grand Rapids, MI, USA.</p> <p>Methods/design</p> <p>There are four overall components to Project FIT: school, community, social marketing, and school staff wellness - all that focus on: 1) increasing access to safe and affordable physical activity and nutrition education opportunities in the schools and surrounding neighborhoods; 2) improving the affordability and availability of nutritious food in the neighborhoods surrounding the schools; 3) improving the knowledge, self-efficacy, attitudes and behaviors regarding nutrition and physical activity among school staff, parents and students; 4) impacting the 'culture' of the schools and neighborhoods to incorporate healthful values; and 5) encouraging dialogue among all community partners to leverage existing programs and introduce new ones.</p> <p>Discussion</p> <p>At baseline, there was generally low physical activity (70% do not meet recommendation of 60 minutes per day), excessive screen time (75% do not meet recommendation of < 2 hours per day), and low intake of vegetables and whole grains and high intake of sugar-sweetened beverages, French fries and chips and desserts as well as a high prevalence of overweight and obesity (48.5% including 6% with severe obesity) among low income, primarily Hispanic and African American 3<sup>rd</sup>-5<sup>th </sup>grade children (n = 403).</p> <p>Trial registration</p> <p><b>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01385046">NCT01385046</a></b></p

    A GPU-accelerated immersive audio-visual framework for interaction with molecular dynamics using consumer depth sensors

    Get PDF
    © the Partner Organisations 2014. With advances in computational power, the rapidly growing role of computational/simulation methodologies in the physical sciences, and the development of new human-computer interaction technologies, the field of interactive molecular dynamics seems destined to expand. In this paper, we describe and benchmark the software algorithms and hardware setup for carrying out interactive molecular dynamics utilizing an array of consumer depth sensors. The system works by interpreting the human form as an energy landscape, and superimposing this landscape on a molecular dynamics simulation to chaperone the motion of the simulated atoms, affecting both graphics and sonified simulation data. GPU acceleration has been key to achieving our target of 60 frames per second (FPS), giving an extremely fluid interactive experience. GPU acceleration has also allowed us to scale the system for use in immersive 360° spaces with an array of up to ten depth sensors, allowing several users to simultaneously chaperone the dynamics. The flexibility of our platform for carrying out molecular dynamics simulations has been considerably enhanced by wrappers that facilitate fast communication with a portable selection of GPU-accelerated molecular force evaluation routines. In this paper, we describe a 360°atmospheric molecular dynamics simulation we have run in a chemistry/physics education context. We also describe initial tests in which users have been able to chaperone the dynamics of 10-alanine peptide embedded in an explicit water solvent. Using this system, both expert and novice users have been able to accelerate peptide rare event dynamics by 3-4 orders of magnitude. This journal i

    Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond

    Get PDF
    The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device’s unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power ‘starvation’ reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added

    Implementation complexity of constellation expansion

    No full text
    Constellation expansion and iterative demodulation and decoding are advanced coded modulation techniques that can potentially outperform traditional system based on soft-decision FEC. In this paper we show that they can be implemented with off-the-shelf components at a surprisingly moderate complexity

    On the performance of a soft decision FEC scheme operating in highly non-linear regime

    No full text
    We investigated the performance of a hybrid FEC scheme against nonlinearities, implementing a 100 Gbps-PDM-DQPSK system, with equally modulated neighboring channels. Experimental results show that the code input-output BER relationship remains unaffected

    Impact of interleaving on SD-FEC operating in highly non-linear XPM-limited regime

    No full text
    We experimentally investigate the behavior of two SD codes in a 100G-PDM-DQPSK system with high-power 10G-OOK neighbors. We show that in the presence of sufficient interleaving the input-output BER relationship of both codes remains unaffected
    corecore