933 research outputs found

    SUPERCONDUCTIVITY AND ANTIFERROMAGNETISM FOR AN EXTENDED HUBBARD HAMILTONIAN - ROLE OF CORRELATED HOPPING IN A SINGLE-BAND MODEL

    Get PDF
    An extended Hubbard model for a single band, including Coulomb repulsion and correlated hopping between nearest neighbors, is studied using a generalized mean-field approach. Antiferromagnetism and superconductivity are probed for arbitrary occupation number, near and away from half filling. Binding of pairs in the superconducting state of this purely repulsive model is mediated by the correlated hopping in the form of a covalent-bond configuration, with partial intrasite and intersite pairings. A region of coexistence is conjectured, the superconductivity being suppressed by the saturation of the staggered magnetic moment. Singlet superconducting nonmagnetic states are obtained for the almost-empty- or full-band cases. On the other hand, antiferromagnetism induces mixed s- and p-type superconductivities in the neighborhood of half filling.4721144171442

    Adsorbate order-disorder effects on recombinative thermal desorption: Equivalence between dynamic Monte Carlo simulations and self-consistent cluster approximations

    Get PDF
    The thermally activated desorption of dissociated diatomic species from a metallic surface is described as a lattice-gas problem on a square lattice with nearest- and next-nearest neighbor interactions between the adsorbates and investigated within dynamic Monte Carlo simulations. In the limit of fast diffusion with respect to desorption, it can be shown that the desorption rate depends directly on the local order induced by the interactions within the adsorbate layer. Therefore, by employing an appropriate quasi-equilibrium cluster approximation for the local order (beyond the quasi-chemical approximation), a differential equation can be derived that depends on self-consistently calculated structure forms, reproducing quantitatively the temperature-programmed desorption spectra simulated with the Monte Carlo procedure. In this way it can be shown that the time evolution obtained from the dynamic Monte Carlo algorithm is indeed 'correct,' and on the other hand, that it can be successfully substituted by a 'cheaper' cluster approximation. (C) 1997 American Institute of Physics.10641620162

    Spin-dependent transmission coefficients for magnetic tunnel junctions: Transport properties and temperature dependence

    Get PDF
    In this paper we present a detailed analysis of the spin-dependent transmission coefficients for magnetic tunnel junctions (MTJ's) including magnon scattering dependence. The conduction electrons are modeled as plane waves and the electron-magnon interaction in the interfaces can be treated as a perturbation opening the spin-flip conduction channels. We explore the main transport properties of the MTJ such as bias and temperature dependence of conductance and magnetoresistance. Our theory is in good agreement with experimental data.72

    Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level

    Get PDF
    We provide a comparative study of the fine tuning amount (Delta) at the two-loop leading log level in supersymmetric models commonly used in SUSY searches at the LHC. These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses models (NUGMd). Two definitions of the fine tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt individual parameters while the second (Delta_q) adds their contribution in "quadrature". As a direct result of two theoretical constraints (the EW minimum conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective prior) of the averaged likelihood (under the priors), under the integral of the global probability of measuring the data (Bayesian evidence p(D)). For each model, there is little difference between Delta_q, Delta_{max} in the region allowed by the data, with similar behaviour as functions of the Higgs, gluino, stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or dark matter and g-2 constraints. The analysis has the advantage that by replacing any of these mass scales or constraints by their latest bounds one easily infers for each model the value of Delta_q, Delta_{max} or vice versa. For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in the CMSSM this is actually a global minimum. Due to a strong (≈\approx exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV, the above values of Delta_q\approx Delta_{max} increase to between 500 and 1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section 2

    Spin-dependent resonant quantum tunneling between magnetic nanoparticles on a macroscopic length scale

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Macroscopic quantum phenomena are common features observed in superconductors, superfluid helium, and Bose-Einstein condensates. However, most of quantum transport studies are based on a small number of dots and are not in long-range electron transport length scale. Here we show that spin-dependent resonant quantum tunneling is achieved in the macroscopic length scale (a few millimeters) corresponding to an array of up to 10(4) junctions in a series consisting of Co nanoparticles embedded in an oxygen-deficient TiO(2) matrix. This phenomenon is observed by magnetoresistance measurements at 5 K in a Coulomb blockade regime. We further present a model based on resonant spin-polarized quantum tunneling of electrons of Co particles. It occurs through resonant continuous spin-polarized defect band states located near the Fermi level of the defective TiO(2), which acts as a magnetic tunnel barrier. These results might be potentially useful for future designs of spintronic quantum devices.834Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Thaptomys Thomas 1915 (Rodentia, Sigmodontinae, Akodontini) with karyotypes 2n = 50, FN = 48, and 2n = 52, FN = 52: Two monophyletic lineages recovered by molecular phylogeny

    Get PDF
    A novel karyotype with 2n = 50, FN = 48, was described for specimens of Thaptomys collected at Una, State of Bahia, Brazil, which are morphologically indistinguishable from Thaptomys nigrita, 2n = 52, FN = 52, found in other localities. It was hence proposed that the 2n = 50 karyotype could belong to a distinct species, cryptic of Thaptomys nigrita, once chromosomal rearrangements observed, along with the geographic distance, might represent a reproductive barrier between both forms. Phylogenetic analyses using maximum parsimony and maximum likelihood based on partial cytochrome b sequences with 1077 bp were performed, attempting to establish the relationships among the individuals with distinct karyotypes along the geographic distribution of the genus; the sample comprised 18 karyotyped specimens of Thaptomys, encompassing 15 haplotypes, from eight different localities of the Atlantic Rainforest. The intra-generic relationships corroborated the distinct diploid numbers, once both phylogenetic reconstructions recovered two monophyletic lineages, a northeastern clade grouping the 2n = 50 and a southeastern clade with three subclades, grouping the 2n = 52 karyotype. The sequence divergence observed between their individuals ranged from 1.9% to 3.5%

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+→K+μ+μ−B^+ \to K^+\mu^+\mu^-, B0→K∗(892)0μ+μ−B^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0→ϕ(1020)μ+μ−B^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb−14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+→K+μ+μ−B^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0→K∗0μ+μ−B^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K∗0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0→ϕμ+μ−decayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore