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Adsorbate order-disorder effects on recombinative thermal desorption:
Equivalence between dynamic Monte Carlo simulations and self-consistent
cluster approximations

Sieghard Weinketz and G. G. Cabrera
Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade Estadual de Campinas (UNICAMP),
Caixa Postal 6165, 13083-970 Campinas, Brazil

~Received 11 July 1996; accepted 8 October 1996!

The thermally activated desorption of dissociated diatomic species from a metallic surface is
described as a lattice-gas problem on a square lattice with nearest- and next-nearest neighbor
interactions between the adsorbates and investigated within dynamic Monte Carlo simulations. In
the limit of fast diffusion with respect to desorption, it can be shown that the desorption rate depends
directly on the local order induced by the interactions within the adsorbate layer. Therefore, by
employing an appropriate quasi-equilibrium cluster approximation for the local order~beyond the
quasi-chemical approximation!, a differential equation can be derived that depends on
self-consistently calculated structure forms, reproducing quantitatively the temperature-programmed
desorption spectra simulated with the Monte Carlo procedure. In this way it can be shown that the
time evolution obtained from the dynamic Monte Carlo algorithm is indeed ‘‘correct,’’ and on the
other hand, that it can be successfully substituted by a ‘‘cheaper’’ cluster approximation.
© 1997 American Institute of Physics.@S0021-9606~97!01503-1#

I. INTRODUCTION

Time-dependent~or dynamical! Monte Carlo simula-
tions have been widely used in the simulation of thermal
desorption processes of simple molecules from metallic
surfaces,1–6 as a practical way to work out the corresponding
lattice-gas models. In this way it has been possible to obtain
an interrelationship between the adsorbate overlayer struc-
ture, its energetics and the desorption kinetics as a function
of temperature and surface coverage,1 considering the local
processes of desorption, diffusion and~eventually! adsorp-
tion, with their proper local neighborhood dependencies. The
kinetic lattice-gas model7 is justified since the adsorbed spe-
cies are located around well-defined equilibrium positions at
the surface sites,8,9 treating the thermally activated local pro-
cesses as stochastic transitions.

In the dynamic Monte Carlo procedure of Fichthorn and
Weinberg10 the time evolution of a given system is obtained
from the sum of its microscopic processes in terms of a het-
erogeneous Poisson process11 ~an equivalent algorithm was
previously devised by Gillespie,12 derived from a correspon-
dence to the master equation formalism!. As applied to the
simulation of temperature-programmed desorption processes,
the procedure will obtain time increments between succes-
sive events as a function of the total transition rate of all the
desorption and diffusion events,6 handled on the same foot-
ing, or just of desorption events,4,5 where diffusion is treated
as a ‘‘thermalization’’ process due to its much smaller time
scale.13,14

Analytical treatments for the lattice-gas desorption prob-
lem are also possible within appropriate statistical
approximations,7,15 and a comparison between the two ap-
proaches should be sought. Therefore, even though Monte
Carlo methods are easy to implement and produce reliable
results, they are rather ‘‘costly’’ in terms of computing ef-

fort, and often carry fluctuation errors and problems due to
insufficient thermalization. Analytical approximations, on
the other hand, will be much faster and provide smoother
results, but they are often unreliable or too difficult to calcu-
late. Thus, whenever a quantitative comparison between the
two approaches can be attained, a much higher confidence on
both solutions will be also achieved.

In this work we present a dynamic Monte Carlo proce-
dure for temperature-programmed desorption~TPD! of dis-
sociated diatomic species on a square lattice, considering
nearest and next-nearest neighbor interactions between the
adsorbates. The lattice-gas model and the dynamic Monte
Carlo procedure are presented in Section II, where the diffu-
sion ‘‘rescaling’’ problem is also discussed, showing the di-
rect dependence of the desorption kinetics on the~quasi-
equilibrium! local order as derived from the stochastic
model. This allows a direct comparison to the local order
obtained from an appropriate minimum free-energy approxi-
mation as theC2 approximation of the cluster variation
method, and thus to the development of a dynamical ap-
proximation for the desorption kinetics, as presented in Sec-
tion III. The numerical results for the adsorbate nearest and
next-nearest neighbor correlation functions, showing the
equivalence between both approaches, are presented in Sec-
tion IV, particularly discussing the case where the adsorbate
layer undergoes an order-disorder transition with a conse-
quent vanishing of one the correlation functions. The equiva-
lence between both methods for TPD spectra is shown in
Section V, and the final remarks are presented in Section VI.

II. RECOMBINATIVE DESORPTION MODEL
AND MONTE CARLO ALGORITHM

The metallic surface is represented by a square lattice
with periodic boundary conditions, withNs51003100 sites,
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each one being either empty or occupied by an adsorbate.
NA is the total number of adsorbates, and the surface cover-
age is defined byu5NA /Ns . The system dynamics is de-
fined by two classes of local processes: pair desorption and
diffusion, characterized by transition rates with an Arrhenius
temperature dependence and activation energies dependent
on the local environment.

Pair desorption will occur when two nearest neighboring
~lateral! sites are both occupied, leaving the sites empty, with
a transition rate

r des
i j 5ndesexp@2~Edes2 iD l2 jDd!/kBT#, ~1!

wherendes is the desorption pre-exponential factor,Edes is
the activation energy in the limit of zero coverage,kB is the
Boltzmann constant andT is the absolute temperature.D l

and Dd are, respectively, the nearest~lateral! and next-
nearest~diagonal! interaction energies~repulsive energies
positively defined!, and i and j the corresponding numbers
of occupied nearest and next-nearest neighbors for the des-
orbing pair~0<i<6, 0<j<8, and 0<i1 j<10, Fig. 1!.

Diffusion may occur whenever an adsorbate has one of
its four nearest or four next-nearest neighboring sites empty,
with a transition rate

r di f
i j 5ndi fexp@2~D1 iD l1 jDd!/kBT# ~2a!

if iD l1 jDd.0, or

r di f
i j 5ndi fexp~2D/kBT! ~2b!

if iD l1 jDd<0, wherendi f is the diffusion pre-exponential
factor, D is the activation energy barrier in the absence of
neighbor interactions, andi and j are, respectively, the dif-
ferences in the numbers of nearest and next-nearest neigh-
bors for the adsorbate between the initial and final sites
~23<i<3,24<j<4!, following the physico-chemical argu-
ment that the energy barrier the adsorbate effectively ‘‘sees’’
when jumping onto a lower total energy site is justD.16

Therefore, considering only the domain of diffusion events
and understanding the termndi f exp(2D/kBT) as a ‘‘delay
factor,’’ the definitions~2! above become equivalent to the
rules of the Metropolis algorithm.17

Within the dynamic Monte Carlo description,6,10,12 the
time evolution of the system is obtained from the micro-

scopic transition rates as a heterogeneous Poisson process,11

considering, for a given configuration at the instantt, the
total transition rate

r tot5(
i j

Ndes
i j r des

i j 1(
i j

Ndi f
i j r di f

i j , ~3!

whereNdes
i j andNdi f

i j are, respectively, the numbers~multi-
plicities! of the desorption and diffusionpossible eventswith
local environment characterized byi j . Therefore, the next
event to occur is randomly chosen out of a weighted list with
all theNtot 5 ( i j Ndes

i j 1( i j Ndi f
i j possibilities.18 The surface

lattice, the possible events’ list and the multiplicitiesNdes
i j

andNdi f
i j are then updated, and at last the timet is incre-

mented according to

t inc5~2 ln r!
1

r tot
, ~4!

wherer is a non-zero random number between 0 and 1.19

The sequence of lattice configurations generated in this way
is a representativesolution for the kinetic lattice-gas model.
At any instantt the system variables can be directly mea-
sured from the lattice configuration, and a better precision
will be obtained by combining different runs. Particularly,
we are here interested in the total number of adsorbates,
NA , and in the numbers of lateral and diagonal pairs of oc-
cupied sites,NAA andNAA

d , respectively, as representative
functions of the local order.

Diffusion poses a serious problem to the algorithm: In
real systems the surface diffusion is generally many orders of
magnitude faster than desorption due to its much smaller
activation energy,14 and therefore, following all the diffusion
events with physically ‘‘realistic’’ transition rates would be
computationally impossible. The role of diffusion is to per-
form the ‘‘redistribution’’ of the adsorbates, and the fast-
diffusion limit means thatthe adsorbate local order shall
always be in a configurational quasi-equilibrium state with
respect to the desorption kinetics.

Following the algorithm’s rules, and assuming that the
system is large enough to keep the multiplicitiesNdes

i j and
Ndi f
i j nearly constant, for a single desorption event there will

be, on average,( i j Ndi f
i j r di f

i j /( i j Ndes
i j r des

i j diffusion events, and
thus the mean time interval for a single desorption event is6

Dt5
1

r tot
F11

( i j Ndi f
i j r di f

i j

( i j Ndes
i j r des

i j G5
1

( i j Ndes
i j r des

i j , ~5!

which is independent of the diffusion velocity, provided the
Ndes
i j multiplicities follow an equilibrium distribution. This

allows us to look for a proper ‘‘rescaling’’ scheme to bring
the r di f

i j down to less prohibitive values, while keeping the
quasi-equilibrium condition.

This was accomplished by redefining, at every event up-
date, the termndi f exp(2D/kBT) with respect to the possible
desorption events, according to

FIG. 1. Partition of the immediate neighborhood to the central pair of ad-
sorbates in terms of thehi anddi clusters.
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( i j Ndi f
i j r di f

i j

( i j Ndi f
i j 5h

( i j Ndes
i j r des

i j

( i j Ndes
i j , ~6a!

whereh is an arbitrary constant that defines the degree of
thermalization. The invariance of the desorption kinetics will
be thus attained with the choice of a sufficiently largeh. A
second constraint is added in that there will be a maximum
mean time incrementtmax due to a single event,

r tot5(
i j

Ndes
i j r des

i j 1(
i j

Ndes
i j r des

i j >1/tmax. ~6b!

This latter condition preventst inc in Eq. ~4! from becoming
too large, which can be particularly critical in TPD simula-
tions ~Section V!, where this would imply large jumps in the
temperature for individual events, destroying the reliability
of the simulations.

A different procedure was used by Meng and
Weinberg,4,5 where the time evolution was obtained consid-
ering just the desorption events, and treating diffusion as a
thermalization process between successive desorption
events. The basic advantage of our procedure presented here
is that thermalization is performed as a self-adjusting process
controlled by a pair of simple parameters, which shall avoid
an excessive computer effort, but the overall result of the two
procedures shall not be different.

For a single desorption event the change in coverage is
22/Ns , and combining it with Eq.~5!, we have

Du/Dt522(
i j

~Ndes
i j /Ns!r des

i j 524(
i j

yp
i j r des

i j , ~7!

with yp
i j 5 Ndes

i j /2Ns , and from where we may recognize the
pair desorption differential equation with local environment
dependencei j .5

From the total number of pairsNAA 5 ( i j Ndes
i j , we may

define a pair probabilityyp5( i j Ndes
i j /2Ns as the probability

that two nearest neighboring sites are both occupied, and
therefore it can be seen that Eq.~7! has adirect dependence
on yp. Indeed, in the absence of adsorbate interactions (D l

5Dd50! the adsorbate overlayer is randomly disordered
~mean-field solution!, with yp5u2, r des

i j 5ndes
3exp(2Edes)/kBT), and the second-order Polanyi–Wigner
differential equation9,20 is recovered,6

Du/Dt52kdesexp~2Edes/kBT!u2,

with kdes5 4ndes. At this point it is convenient to introduce
also the next-nearest neighbor pair probability as
wp5NAA

d /2Ns .

III. CLUSTER APPROXIMATIONS TO LOCAL ORDER
AND DESORPTION KINETICS

A consistent approximation to the desorption kinetics by
the Monte Carlo procedure will depend on an appropriate
approximation to the partitions$Ndes

i j %. These are, in reality,
all the possible combinations of the numbers of nearest and

next-nearest neighbors to a central nearest neighboring pair
of adsorbates, resulting in sums of all the possible geometric
clusters of 43 3 sites where the central sites are occupied
~Fig. 1!.

The cluster variation method~CVM!, originally devised
by Kikuchi,21 is a practical method of obtaining the equilib-
rium properties of a lattice-gas with competing interactions
in terms of a given geometric block ~cluster!
approximation.22,23 The internal energy and the configura-
tional entropy are then obtained by minimizing the resulting
free energy by a self-consistent procedure.24 The precision of
the approximation will depend on the size and geometry of
the basic clusters used, and the way the lattice can be built
from them. The quasi-chemical3–5,25 or Bethe21 approxima-
tion for the square lattice is just one of the simplest cases
within the CVM, but the highest order with a known analyti-
cal solution.

On testing different approximations, we have found the
C2 approximation22 to be sufficiently precise to reproduce
the both theyp (y1) andwp (w1) pair probabilities obtained
by the Monte Carlo simulations in the equilibrium condition,
as will be shown in the following section. All relevant cluster
fractions used here and in the following sections are given in
Table I; their derivation within theC2 approximation and the
specific details for the CVM calculation can be easily ob-
tained by following the procedure described in Ref. 22 for
theB2 case.

30 The filled (d) and empty circles (s) repre-
sent, respectively, the occupied and empty surface sites.

The yp
i j fractions can be estimated from thehi-clusters

by extending the combinatorial analysis of Zhdanov.25 This
is done by partitioning the 10-site immediate neighborhood
of the central pair into two 4-site blocks and two 1-site
blocks as shown in Fig. 1. The 4-site blocks can be filled by
direct combinations of thehi fractions that will account for
the central pair, weighted by their energy contributions. On
the other hand, the 1-site blocks can be filled by thed1 and
d2 fractions ~Table I!. Therefore, by considering the multi-
nomial expansion, Eq.~7! can be re-summed into

TABLE I. Basic and auxiliary cluster fractions used to describe the equilib-
rium correlation functions and desorption kinetics.

1622 S. Weinketz and G. G. Cabrera: Recombinative thermal desorption
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du/dt524ndesexp~2Edes/kBT!y1
23h1exp@~3D l13Dd!/kBT#1h2exp@~3D l12Dd!/kBT#1h2exp@~2D l13Dd!/kBT#

1~h21h4!exp@~2D l12Dd!/kBT#1~h31h51h6!exp@~2D l1Dd!/kBT#1~h71h8!exp@~D l12Dd!/kBT#

1~h51h101h11!exp@~D l1Dd!/kBT#1h13exp~D l /kBT!1h14exp~Dd /kBT!1h17%
2@d1exp~D l /kBT!1d2#

2.

The explicit derivation in terms of theyp
i j fractions is too

cumbersome to be presented here, but is not difficult to fol-
low.

The quantitative equivalence between the numerical in-
tegrations of this last expression and the dynamic Monte
Carlo simulations for TPD spectra will be shown in Section
V. An approximation of higher order thanC2 could be used
here in the estimation of theyp

i j probabilities, but with little
gain for the excess of analytical effort and numerical conver-
gence problems involved.

IV. NUMERICAL RESULTS FOR THE PAIR
PROBABILITIES: COMPARISON BETWEEN BOTH
APPROACHES

Numerical results for the quasi-equilibrium nearest and
next-nearest neighbors pair probabilities as function of the
coverage and at fixed temperature were obtained from Monte
Carlo simulations of desorption processes by recording for
every single desorption interval the mean values for
NAA/2Ns andNAA

d /2Ns at this coverage. The resulting data
were smoothed with a Savitzky–Golay digital filter19,26

~fourth order polynomial, window of 51 points!. Throughout
this section we taketmax5`, h550, single simulations
runs,T5300 K, but alsondes51013 s21 andEdes5 1.6 eV
~the latter are, nonetheless, irrelevant here as no dynamics is
concerned!. There results can then be directly compared to
the y1 andw1 pair probabilities from theC2 approximation.
For the sake of comparison, the Bethe or quasi-chemical ap-
proximation, is also presented, whenever appliable. All the
computer codes used here were written in PASCAL lan-
guage, and run on Sun and DEC Alpha workstations.

Figure 2~a! presents a counter-intuitive result for the
nearest-neighbor pair probabilityyp , with D l50.1 eV and
Dd 5 0, exhibiting a ‘‘dip’’ at half coverage (u50.5! where
yp falls to zero~log scale!, indicating an ordering transition
into a c(232) or ‘‘checkerboard’’ structure. This is most
clearly seen in theC2 approximation~solid line!, whereyp
falls to a value very close to zero atexactlyu51/2, increas-
ing immediately at the left or right of this point. The latter
curve is closely matched by the Monte Carlo simulation
~circles!, except at the region immediately left to the dip. The
difference between both curves is partially due to insufficient
thermalization and the finite size of the simulation, but we
can infer that theC2 approximation is not yet an exact solu-
tion to this problem. The quasi-chemical approximation
~dashed line! is also plotted, presenting avery poorcompari-
son to the other two curves. The next-nearest neighbor pair
probabilitywp is shown in Fig. 2~b! ~linear scale!, with an
excellent comparison between the two curves, and where the

ordering transition at half coverage can be recognized as a
change in the derivative with respect tou.

A much smoother transition is present when the repul-
sive energy is halved, as shown foryp andwp in Figs. 3~a!
~log scale! and 3~b! ~linear scale!, respectively, forD l 5 0.05
eV and Dd50. A partial ordering transition into the
c(232) structure is still occurring, as shown inyp by an
inflection point at half coverage in theC2 approximation
~solid line!, and as a small ‘‘depression’’ around this point in
the Monte Carlo simulation~circles! immediately at the left;
for the rest of the graphic the curves are identical. The same
is valid forwp , with an inflection point at half coverage. The
quasi-chemical approximation is also shown~dashed line!,
differing from the other two results in the central region.

The comparison between Figs. 2 and 3 says that the
onset of an orderedc(232) phase should start for a given
repulsion energy at this temperature. Indeed, when following
theC2 approximation over theu50.5 line, we find thatyp
falls steadily asD l /kBT is increased, as shown in Fig. 4~the
‘‘abrupt’’ fall at D l /kBT . 3.108 is due to round-off insta-
bilities of the self-consistent procedure; the real curve is
likely to continue according to the dashed line!. This is con-

FIG. 2. Nearest and next-nearest neighbor pair probabilitiesyp ~a! andwp

~b! as a function of the coverageu, for D l50.1 eV andDd50, at 300 K. The
circles represent the simulation withh550, the solid line is theC2 approxi-
mation and the dashed line the quasi-chemical approximation.
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sistent with the valueD l /kBT . 1.754 after which the onset
of thec(232) phase should begin~positionA in the figure!,
obtained by Payneet al.27 using the transfer matrix method.
The ‘‘dip’’ in Fig. 2 and the ‘‘depression’’ in Fig. 3 corre-
spond, respectively, toD l /kBT 5 3.868 and 1.934. Consid-
ering the Helmholtz free energyF5E2TS, the ordering
transition is thus a situation where a minimum internal en-
ergyE can be attained at the expense of a minimum entropy

S. This phase transition will thus explain the results of Cao,28

who obtained strong variations in the diffusion coefficient of
a lattice-gas around half coverage as the nearest-neighbor
repulsion energy was varied. This ordering effect also occurs
due to the absence of a next-nearest neighbor repulsion term.
With its inclusion, competition between both repulsions will
arise and the ‘‘checkerboard’’ order will be destroyed. How-
ever, a compromise between the internal energy and the con-
figuration entropy will always exist for the minimum free
energy,27,29 and thus a lowering ofyp can always be found
for appropriate energy parameters.

A simpler case without the presence of the ordering tran-
sition is shown in Fig. 5, withD l50.1 eV andDd5D l /2,
within a dipole dependence of the repulsive potential. A very
good comparison is found between the simulation~circles!
and the CVM calculation~solid line! for eitheryp or wp .

This last set of figures shows that the quasi-equilibrium
local order obtained by the Monte Carlo simulation can be
very well approximated by theC2 approximation, except in
the regions immediately left tou50.5 in Figs. 2 and 3, where
a partial ordering transition is occurring, and we may infer
that this approximation is yet ‘‘incomplete,’’ even though
sufficient for our purposes.30 A higher-order approximation
could be used here, but this would imply difficulties in the
self-consistent numerical convergence due to a much larger
number of independent variables.

The equivalence should not be surprising, however, if
we recognize the diffusion rates~2! as equivalent to the
Metropolis algorithm,17 which was devised as a method for
simulatingthe equation of state for a given Hamiltonian. On
the other hand, the CVM is anexplicit calculation of an
equation of state of a lattice-gas system, and thusan equiva-

FIG. 3. The same as Fig. 2, withD l 5 0.05 eV.

FIG. 4. Nearest-neighbor pair probabilityyp as a function of the reduced
energyD l /kBT at u 5 0.5 within theC2 approximation. The dashed line is
the probable continuation of the curve, which falls to zero due to round-off
errors. PositionA is the point after which the onset of thec(232) phase
takes place according to Payneet al. ~Ref. 27!, and positionB corresponds
to the desorption minimum of Fig. 6 withu051.

FIG. 5. The same as Figs. 2 and 3, withD l 0.05 eV andDd50.025 eV.
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lence can be achieved if a suitable approximation is used
within the CVM, as we found withC2.

Finally, Figs. 2~a! and 3~a! show clearly that the quasi-
chemical approximation fails drastically in describing the lo-
cal order when a single interaction energy is concerned, ex-
cept for the extremes at the high and low coverages far from
the ordering regions, and therefore severely limiting its ap-
plicability to problems in reaction and desorption
kinetics.3–5,31

V. TEMPERATURE-PROGRAMMED DESORPTION
SPECTRA

In the temperature-programmed desorption~TPD! the
time derivative of the surface coverage is recorded as a func-
tion of the temperature, that is also as a ‘‘programmed’’
function of the time, usually9,20,32

T5T01bt, ~8!

whereT0 is the initial temperature andb the temperature
advancement rate, with adsorption proceeding from an initial
coverageu0. A TPD spectrum is thus a ‘‘collective signa-
ture’’ of all the simultaneous events of desorption and diffu-
sion, as function of the experimental parametersu0, T0
andb.

In the dynamic Monte Carlo simulations of TPD pro-
cesses, the system was initialized by randomly fillingu0Ns

sites of the square lattice and letting it thermalize through
h( i j Ndi f

i j diffusion steps. Thereafter, after each succeeded
event,t andT are increased according to Eqs.~4! and ~9!,
respectively, and after each desorption event the current val-
ues ofu, t, T, yp andwp are recorded. The final results were
taken as the average of 10 independent runs, and the time
derivative of u and absolute values above were smoothed
with the Savitzky–Golay filter.19,26

The simulations are compared to the integration of Eqs.
~8! and ~9! with a fourth-order Runge–Kutta procedure, us-

ing an adaptive size step scheme19 where, at each integration
step thehi , di andy1 fractions are obtained self-consistently
by the C2 calculation for the current values ofx1[u
andT.

Throughout this section we usedndes51013 s21, Edes

5 1.6 eV,T05300 K andb55 K/s, and in the simulations,
h 5 50 andtmax50.1 s. The TPD spectra corresponding to
the energy parameters of Fig. 2,D l 5 0.1 eV andDd50, are
shown if Fig. 6, withu051, 0.45 and 0.25~top to bottom!.
The circles represent the Monte Carlo simulations, and the
solid lines the cluster approximation. Theu051 spectrum is
split into two at half coverage withT . 465 K, correspond-
ing to the onset of thec(232) phase, withD l /kBT . 2.496
andyp . 4.1831023 ~point B in Fig. 4!, where desorption
virtually stops due to the almost absolute absence of desorp-
tion pairs. Then, as temperature increases, thec(232) phase
is overcome, and desorption is resumed~a similar path over
the phase diagram is found for non-recombinative
desorption3!. There is a good correspondence between simu-
lation and cluster approximation curves, except for the re-
gion around and immediately below half coverage, where the
correspondence in the quasi-equilibrium is incomplete, as
seen in Figs. 2 and 3. A much better correspondence is thus
found for theu050.45 and 0.25 pairs of curves.

This last result shows precisely how an order-disorder
transition may show itself in TPD spectra. Multiple peaks in
desorption spectra have since long been known15,33 to arise
from adsorbate-adsorbate interactions, but their relation to
the ordered phases was only possible with either Monte
Carlo3 or approximate27 solutions to lattice-gas models. The
relation to the ordered phases is enhanced here if we consider
a conceptual difference between recombinative and non-
recombinative desorption kinetics: In the recombinative case
the total desorption rate dependsdirectly on the total number
of pairs available to desorption, NAA5( i j Ndes

i j with an ‘‘en-
velope’’ dependence, and not just on their distribution
among theNdes

i j multiplicities and the associatedr des
i j arising

from the interactions. Ordered structures are well known to

FIG. 6. TPD spectra forT05300,b54 K/s, ndes51013 s21, Edes51.6 eV,
D l50.1 eV, andDd50, for initial coveragesu051, 0.45 and 0.25. Simula-
tion runs are represented by circles (tmax50.1 s andh550! and cluster
approximations by solid lines.

FIG. 7. The same as Fig. 6, withD l50.05 eV andu051, 0.75, 0.5, 0.25, and
0.1.
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be formed by chemisorbed hydrogen around half coverage
and low temperatures on low-index planes of metals like Ni,
Co and Pd.34 Therefore, a situation similar to Fig. 6 would
occur with the observedb1 andb2 features of TPD spectra
for H2 from Ni and Co35 and W~100!.20

A much better correspondence between the Monte Carlo
simulations and the cluster approximations is shown in Fig. 7
and 8 for the energy parameters of Figs. 3,D l50.05 eV and
Dd50, and 5,D l50.05 eV andDd50.025 eV, respectively,
for u051, 0.75, 0.5, 0.25 and 0.1~top to bottom!. A more
‘‘conventional’’ peak broadening can be recognized as a
continuous overlap due to the different activation energies
arising from the interactions. The slight differences in the
latter figure should be due to yet incomplete approximation
of the yp

i j terms by thehi clusters in Eq.~7! when too large
repulsions are present.

VI. CONCLUSIONS AND FINAL REMARKS

The dynamic Monte Carlo method was applied to the
simulation of temperature-programmed desorption processes
of a diatomic species dissociatively adsorbed on a metallic
surface represented by a square lattice, considering the local
processes of pair desorption and surface diffusion with local
dependencies due to both nearest~lateral! and next-nearest
neighbor~diagonal! interactions between the adsorbates, in
the limit of fast diffusion with respect to desorption. The last
condition ensures that the adsorbate layer is in a quasi-
equilibrium state, so that the desorption kinetics can be
shown to have a direct dependence on the equilibrium local
order induced by the interactions between the adsorbates.
Therefore, the desorption kinetics obtained from the Monte
Carlo procedure can be ‘‘reproduced’’ with the use of a sta-
tistical approximation that describes properly the local order.
This was achieved with theC2 approximation of the cluster
variation method, allowing a very good quantitative repro-
duction to both dynamical desorption spectra and equilib-
rium pair correlation functions resulting from the simulation.

The quantitative agreement between the two approaches
thus has two immediate implications:

~i! it is shown that the dynamic Monte Carlo algorithm
does indeed provide the correct time evolution of the
stochastic system, even when a continuous step-by-
step rescaling of one process with respect to another is
included;

~ii ! the Monte Carlo simulation can be successfully sub-
stituted by a differential equation formalism provided
the system’s kinetics depends directly on a quasi-
equilibrium condition that can be appropriately de-
scribed.

These two points deserve a further few comments: the
temperature-programmed desorption simulations presented
here are atour de force for the dynamic Monte Carlo
method, since they comprise two classes of different, but
interrelated, basic processes~diffusion and desorption! with
transition rates that are also a direct function of the time.
Monte Carlo simulations are, however, rather expensive in
terms of computer effort and bear inaccuracies due to statis-
tical noise that can be just partially smoothed out by either
the combination of different runs or with the use of digital
filters. The cluster approximations, on the other hand, are
much faster calculations with smooth results, but as it is
found with theC2 case, they may be incomplete in some
cases, or become rather complicated as the number of vari-
ables increases with the order of the approximation, leading
also to numerical convergence problems. This can be, in
turn, a point of advantage for the Monte Carlo methods, for
they can always be defined in terms of a simple set of proba-
bilistic rules.

A careful weighing of the two approaches should be
made when extending this simple model of desorption plus
diffusion with immediate neighborhood interactions onto
more realistic problems. Thus, even though this model is
able to describe a wide range of experimental results, it has
to be extended to include basic processes like adsorption,
precursor states, surface reconstructions, heterogeneity in the
chemisorption sites, etc., or even more complex situations of
catalytic surface reactions, like CO11/2 CO2
 CO2 over
Pd or Pt.36 Therefore, even in the situation where a quasi-
equilibrium condition can be applied, finding out an appro-
priate equilibrium configuration may not always be a feasible
task. Nevertheless, a combination of both methods can be
pursued in some situations~see Table II!.
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FIG. 8. The same as Figs. 6 and 7, withD l50.05 eV,Dd50.025 eV, for
u051, 0.75, 0.5, 0.25, and 0.1.
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