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In this paper we present a detailed analysis of the spin-dependent transmission coefficients for magnetic
tunnel junctions �MTJ’s� including magnon scattering dependence. The conduction electrons are modeled as
plane waves and the electron-magnon interaction in the interfaces can be treated as a perturbation opening the
spin-flip conduction channels. We explore the main transport properties of the MTJ such as bias and tempera-
ture dependence of conductance and magnetoresistance. Our theory is in good agreement with experimental
data.
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I. INTRODUCTION

Nowadays, the interest on the phenomena of giant mag-
netoresistance �GMR� in magnetic tunnel junctions �MTJ’s�
has grown significantly due to potential applications in mag-
netoresistive reading heads, magnetic field sensors, nonvola-
tile magnetic random access memories, and many others.1–5

The effect is based on the spin-dependent scattering mecha-
nisms proposed in the early papers by Cabrera and Falicov,6

which lead in MTJ’s, to a strong dependence of the conduc-
tance on the magnetic polarization.7 A model for spin tunnel-
ing was formulated by Jullière7 and later developed by
Stearns8 and Slonczewski.9 Typically, the GMR effect found
in MTJ’s is of the order of 25–30 %,10,11 and points to a large
ratio of the densities of states for majority �M� and minority
�m� electrons at the Fermi level �EF�

NM�EF�
Nm�EF�

� 2.0-2.5.

As usual in MR experiments, one compares the resistances
for the cases where the magnetizations at the electrodes are
antiparallel �AP� and parallel �P�. In several experiments re-
ported in the literature �see, for example, Refs. 1, 2, 10, and
11�, the junction resistance drops significantly with the ap-
plied voltages, with a sharp peak at zero bias �zero-bias
anomaly�. This bias dependence shows a rapid initial de-
crease up to voltages of the order of V�100 mV, then slows
down but continues decreasing with voltages, up to 60% of
the peak value at 500 mV in some cases.11

In Ref. 10, scattering from magnons at the electrode-
insulator interface has been proposed as the mechanism for
randomizing the tunneling process and opening the spin-flip
channels that reduce the MR. While this process may explain
the MR behavior in the vicinity of zero-bias �voltages
smaller than 40–100 mV�, estimations of magnon scattering
cross sections show that the effect is too small to account for
the sharp drop in resistance observed in the whole range of
500 mV. In fact, inelastic-electron tunneling spectroscopy
�IETS� measurements at low temperature showed peaks
which can unambiguously be associated with one-magnon
spectra at very small voltages �from 12 to 20 mV, with tails

up to 40 mV, and maximum magnon energy not larger than
100 meV�.1 To go beyond this limit will imply multimagnon
processes, which are negligible at low temperature. This
way, the electron-magnon coupling constant coming from
Ref. 10 is by sure considerable overestimated.

The above explanation10 has been challenged in Ref. 12,
where it is shown that the experimental data can be under-
stood in terms of elastic tunneling currents which conserve
spin, by considering effects not taken into account in Ref. 10.
Those include the lowering of the effective barrier height
with the applied voltage, as in the classical Simmons’
theory,13 and most important, variations of the densities of
states with the bias at both magnetic electrodes. The latter is
a relevant question, since experiments probe depths of the
order of 0.5 eV from the Fermi surface. The bias dependence
of MR due to the electronic structure of tunneling junctions
has been discussed in Ref. 14 and a simple calculation de-
veloped in Ref. 12 models the band structure with free elec-
tronlike densities of states, since the tunneling current is
dominated by the s-electron contribution. This approach
yields a zero bias anomaly which depends on the band struc-
ture, and a variation of the MR which has the right order of
magnitude for the whole range of 500 meV. The above dis-
cussion and other experimental results primarily exhibit that
the density of states dependence on the applied voltage plays
an important role.14–16 However, fine details of experiments
at very small voltages are difficult to fit. One may adopt here
a pragmatic procedure, with a more intricate band structure
and more free parameters to improve the fitting.2 Many
works take a different stand, motivated by results from IETS
experiments.1 In Ref. 17 the simple model set forth by
Bratkovsky18 with the addition of many-body effects is used,
showing that the coupling of electrons to magnetic excita-
tions is very important. The minority electrons are consid-
ered as quasiparticles by virtue of their strong coupling to
spin waves. In Ref. 19 a consistent study of the voltage de-
pendence of the “giant” magnetoresistance in ferromagnetic
tunneling junctions is presented. The main transport proper-
ties at low bias and temperatures near 0 K were well estab-
lished, including the lowering of the effective barrier height
with the applied voltage, different variations of the density of
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states for each spin band with voltage and magnon assisted
inelastic tunneling near zero bias. Taking into account all
those effects is essential to fully explain experimental results
at low temperature for the voltage range between 0 and
500 mV. However, in that work the direct and inelastic trans-
mission coefficients are assumed to be given by a simple
WKB approximation and the temperature dependence is not
analyzed. Temperature dependence of conductance and MR
were investigated by various works.3,11,20

In Ref. 21 the spin dependence of the inelastic mean free
path and electronic structure of electrons at low temperatures
in transition ferromagnetic metals is explored, considering
excited electrons as plane waves. While in bulk ferromagnet
the mean free path is important in the evaluation of transport
properties such as the conductance in the tunneling phenom-
ena the main contribution comes from s electrons, that can be
considered as plane waves.

In this paper our aim is to give a detailed analysis of the
tunneling transmission coefficients in a magnetic tunnel
junction including the electron-magnon scattering depen-
dence. We consider that the electrons tunneling through the
barrier are s-like in the ferromagnetic electrodes, being mod-
eled by plane waves. Magnons are present in the
ferromagnet-insulator interfaces and the electron-magnon in-
teraction can be treated as a perturbation responsible for the
opening of spin-flip conduction channels. The interfaces are
assumed to be perfect and there are no impurity scattering
centers inside the barrier. That situation correspond to a per-
fect MTJ. Otherwise the transport properties are asymmetric
with respect to the applied voltage. The transfer matrix
method is used to obtain the transmission coefficients. After
that, the main transport properties such as bias and tempera-
ture dependence of conductance and magnetoresistance can
be obtained. A complete theory should then include the fol-
lowing.

�i� A detailed analysis of the spin-dependent transmission
coefficients which lead to lowering of the effective barrier
height with the applied voltage and magnon scattering de-
pendence of the spin-flip transmission coefficients. We as-
sume that the tunneling electrons are mainly of s-character
represented by plane waves.

�ii� Magnon assisted tunneling effects, with maximum
magnon energies of the order of �100 meV. At low tem-
perature, electrons from the electrodes, accelerated by the
applied voltage, excite magnons at the interface. At low tem-
perature, only magnon-emission processes should be consid-
ered.

�iii� Variation with voltages of the densities of states for
the different spin bands in the ferromagnets. Here, we will
follow closely the approach of Refs. 12 and 19, with a simple
picture of the band structure. This is motivated by the dis-
cussions given in Refs. 12 and 15 over the polarization of the
tunneling current.

The content of this paper can be described as follows. In
the next section, we put forward the theoretical model, giv-
ing a general description of the FM-IS-FM structure and pro-
posing the Hamiltonian and its general solutions. In Sec. III
we obtain the spin-dependent tunneling coefficients through
the use of the transfer matrix method. Section IV presents a
study of the MTJ transport properties and in the last section,
a few conclusions and remarks are added.

II. THEORETICAL FRAMEWORK

A typical magnetic tunnel junction is shown in Fig. 1. The
semi-infinite regions FMI and FMII are two metallic ferro-
magnetic electrodes with the magnetization strongly oriented
along the z direction, provided by the alignment of the spin
of d electrons. Notice that the direction of the magnetization
corresponds to the direction of spin quantization and we
could have chosen the x or y direction to be the direction of
the magnetization. The following analysis is not affected by
the choice of a particular direction of quantization, that only
imply the choice of the most appropriate spin basis. It is
shown experimentally through IETS �Ref. 11� that spin wave
excitations �magnons� occur close to the interfaces FM-IS
�surface magnons�. So, we considered into the ferromagnetic
reservoirs transition regions, denominated TRI and TRII,
where the direction of the magnetization is rotated and the
existence of magnons is allowed. When the magnon wave
vector q is quasi-two-dimensional the magnon wave function
is localized at the interfaces, but with finite localization
length and we have thin transition regions. The above dis-
cussion can be viewed classically as a consequence of the
Maxwell equation � ·B=�0� �H+�M�=0. For ferromag-
netic materials ��1, B��0�M and M=Mẑ in the semi-
infinite reservoirs. However, the medium discontinuity �from
ferromagnetic metal to nonferromagnetic insulator� permits
the vector M to rotate in the transition regions close to the
interfaces. The transition regions allow spin-flip of the in-
coming and outgoing electron through electron-magnon in-
teraction as will be seen later. The region named IS is a
nonferromagnetic insulator representing a potential barrier,
where the conduction electron is not subjected to magnetic
interactions, i.e., there are no spin interaction inside the bar-
rier. In practice the insulator is made of a thin oxide film. To
describe the abovementioned we follow Refs. 9 and 18 and
decompose the total Hamiltonian into five parts:

H1 =
p2

2m
− �1�z �− � � z � − 	� , �1�

FIG. 1. A typical magnetic tunnel junction: FMI and FMII are
two ferromagnetic electrodes, TRI and TRII are also ferromagnetic
but there the magnetization is permitted to rotate, due to the pres-
ence of magnons. IS is a potential barrier provided by a thin oxide
film.
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H2 =
p2

2m
− g� d3x�J�x,x���� · S1�x�� �− 	 � z � 0� ,

�2�

H3 =
p2

2m
+ V0 �0 � z � d� , �3�

H4 =
p2

2m
− g� d3x�J�x,x���� · S2�x�� �d � z � d + 	� ,

�4�

H5 =
p2

2m
− �2�z �d + 	 � z � + �� , �5�

where �� = ��x ,�y ,�z� stands for the Pauli spin matrices. �1

and �2 are related to the electron’s interaction with the mag-
netization provided by d electrons in each ferromagnetic
electrode. J�x ,x�� represents the exchange between s and d
electrons and g is some coupling constant between conduc-
tion electrons and the magnon fields S1 and S2 in the transi-
tion regions. 	 is the effective thickness of the transition
regions. V0 is the effective barrier height and d its thickness.
The spin wave excitations are described by a linearized
Holstein-Primakoff transformation22

S = �2S/N�
q

�e−iq·xbqê+ + eiq·xbq
†ê−�

+ �S − 1/N�
q,q�

ei�q−q��·xbq
†bq�	êz �6�

being N the number of sites at the interface, S the spin, bq
and bq

† the annihilation and creation magnon operators with
wave vector q, ê+�ê−� the positive �negative� helicity of the
magnon. The number of magnons is given by the Bose-
Einstein distribution nq=1/ 
exp�
�q /kBT�−1�, being T the
absolute temperature and kB the Boltzmann constant. In the
spirit of a one-magnon theory we neglect two magnon scat-
tering processes and when N�nq=bq

†bq we may write ap-
proximately

S = �2S/N�
q

�e−iq·xbqê+ + eiq·xbq
†ê−� + Sêz. �7�

The unperturbed magnetic Hamiltonian is written as follows:

H0M = �
q


�qbq
†bq. �8�

The Hamiltonians �1� and �5� are diagonal in the �z basis
and have identical solutions. The general form �p2 /2m
−��z��=E� has the following solutions:

�↑ = e±ik↑z�↑, �9�

�↓ = e±ik↓z�↓, �10�

where k↑=�2m�E+�� /
 and k↓=�2m�E−�� /
, �� are the
Pauli spinors

�↑ = �1

0
	 and �↓ = �0

1
	 �11�

and the sign 
 ��� in the exponential must be chosen for an
electron with positive �negative� velocity along the z axis.

For the Hamiltonians �2� and �4� the general form is H
=p2 /2m−g�d3x�J�x ,x���� ·S�x��, which is nondiagonal in
the �z basis. The Pauli spin matrices can be represented by
�� = ��+ ,�− ,�z�, with �±=�x± i�y and whose action on the
Pauli spinors are the raising �lowering� of the spin:

�+�� = 	�↓�↑ and �−�� = 	�↑�↓,

	��� is the Kronecker delta function. The Hamiltonians �2�
and �4� in transition regions in terms of the quantized mag-
non field is written below:

H =
p2

2m
− gS��z − g�2S/N�

q
� d3x�J�x,x���e−iq·x�bq�−

+ eiq·x�bq
†�+� ,

with �=�d3x�J�x ,x�� constant and Sz=S�. Notice that the
product of circular unitary vectors are ê± · ê�=1 and ê± · ê±
=0. For that reason the term �+ of the electron spin is com-
bined with the magnon creation term. It means that a magnon
with negative angular momentum is created while the elec-
tron changes its spin from down to up state, conserving the
angular momentum of the whole system. Making the follow-
ing definition:

f�x,q� =� d3x�J�x,x��e−iq·x�,

the Hamiltonian takes a simpler form

H =
p2

2m
− gSz�z − g�2S/N�

q

f�x,q�bq�− + f*�x,q�bq

†�+� .

�12�

Now, we will calculate the electron wave function through
the use of the perturbation theory, with the magnon field as
the perturbation

H0 =
p2

2m
− gSz�z, �13�

HI = − g�2S/N�
q


f�x,q�bq�− + f*�x,q�bq
†�+� . �14�

The interaction Hamiltonian �14� makes the transition of
magnon states with different magnon numbers in the Fock
space. The overall solution is a tensor product of the mag-
non’s wave function with the electron’s wave function. The
eigenkets which make both Hamiltonians �8� and �13� diag-
onal simultaneously are 
�k ,�� � �nq��= 
�k ,� ;nq��. How-
ever, we are interested only in obtaining the electron’s wave
function and the magnon states will be omitted. To the first
order the perturbation theory yields

��+� = ��↑� +
��↓�HI��↑�

E↑ − E↓
��↓�
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��−� = ��↓� +
��↑�HI��↓�

E↓ − E↑
��↑�

being E↑−E↓=−2gSz=−2g�S. We write the solutions explic-
itly, as follows:

��+� = ��↑� +
f�q��nq

�2S�N
��↓� , �15�

��−� = ��↓� −
f*�q��nq + 1

�2S�N
��↑� . �16�

The functions �15� and �16�, normalized with respect to the
first order approximation, are the general solutions of the
Hamiltonians �2� and �4�. At low temperatures nq→0 and
these solutions are written as follows:

��+� = ��↑� , �17�

��−� = ��↓� −
f*�q�

�2S�N
��↑� . �18�

Looking at them the obvious conclusion is that the spin up
state ���↑�� will not interact with the magnon field while the
spin down state ���↓�� interact with magnon field by emis-
sion process. At higher temperatures nq�0 and magnon
emission and absorption processes are allowed. Thus, the
electron’s wave functions can be represented by

��+� = sin ���↑� + cos �e−i���↓� , �19�

��−� = cos ���↑� − sin �e−i���↓� . �20�

This case is being analyzed in another paper,23 where the
effective magnetization is represented by the angle �.

Finally, in the barrier Hamiltonian �3� we do not have spin
interactions, being the simplest solution written below

� = �A�↑ + B�↓�e�z + �C�↑ + D�↓�e−�z �21�

with �=�2m�V0−E� /
, V0�E. Now we know the general
solutions of the Hamiltonians �1�–�5�, each one representing
one of the five distinct regions FMI, TRI, IS, TRII, and FMII,
and we need to match these solutions by making � and
d� /dz continuous at the interfaces. This will be done in the
next section.

III. THE SPIN-DEPENDENT TRANSMISSION
COEFFICIENTS

For the determination of the spin-dependent transmission
coefficients in the FM-IS-FM structure the transfer matrix
method is the most useful. In the metallic ferromagnetic
electrodes the electrons are subjected to inelastic scattering,
being the mean free path spin dependent.21 However, we are
dealing with tunneling and the main contribution to the cur-
rents comes from s electrons, which can be represented by
plane wave solutions. Consider that in region FMI the elec-
tron’s wave function is composed by an incident part and a
reflected one �1=�inc+�refl, obeying �9� and �10�:

�1 = �I↑eik↑z + R↑e
−ik↑z��↑ + �I↓eik↓z + R↓e

−ik↓z��↓. �22�

I↑ �I↓� is the amplitude of the incident wave with spin up
�down� and R↑ �R↓� is the amplitude of the reflected waves
with spin up �down�. The wave functions among the two
ferromagnetic regions are easily obtained but they will not be
shown here. The transmitted wave to the ferromagnetic elec-
trode FMII, propagating forward in the z axis is written in the
following way:

�t = T↑e
ik↑�z�↑ + T↓e

ik↓�z�↓ �23�

being T↑ and T↓ the transmission amplitudes for spin up and
spin down, respectively. The transfer matrix equation is ob-
tained by requiring the continuity of the function � and its
derivative d� /dz in the interfaces, yielding

�
I↑
R↑

I↓
R↓
� = M1M2M3M4M5�

T↑

0

T↓

0
� �24�

with the matrices Mj, j=1,2 , . . . ,5 defined below

M1 = �M1↑
−1 0

0 M1↓
−1 	 , �25�

where 0 is the 2�2 null matrix and

M1↑ = � e−ik↑	 eik↑	

ik↑e
−ik↑	 − ik↑e

ik↑	 	 ,

M1↓ = � e−ik↓	 eik↓	

ik↓e
−ik↓	 − ik↓e

ik↓	 	 ,

M2 = �b1c1A + b2c3B b1c2A + b2c4B

b3c1A + b4c3B b3c2A + b4c4B
	 , �26�

where

A = � cos�k+	� − �k+�−1 sin�k+	�
k+ sin�k+	� cos�k+	�

	
and

B = � cos�k−	� − �k−�−1 sin�k−	�
k− sin�k−	� cos�k−	�

	 ,

M3 = �C 0

0 C
	, where C

= � cosh��d� − �−1 sinh��d�
− � sinh��d� cosh��d�

	 , �27�

M4 = �b1c1A� + b2c3B� b1c2A� + b2c4B�

b3c1A� + b4c3B� b3c2A� + b4c4B�
	 , �28�

where
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A = � cos�k+�	� − �k+��−1 sin�k+	�
k+� sin�k+�	� cos�k+�	�

	
and

B = � cos�k−�	� − �k−��−1 sin�k−�	�
k−� sin�k−�	� cos�k−�	�

	 ,

M5 = �M5↑ 0

0 M5↓
	 ,

M5↑ = � eik↑��d+	� 0

ik↑�e
ik↑��d+	� 0

	, M5↓ = � eik↓��d+	� 0

ik↓�e
ik↓��d+	� 0

	 .

�29�

The parameters bi and ci depend on the magnon field
through f�q� and n�q�. They are defined below:

b1 =
1

N+ , b2 =
− f*�q��nq + 1

N−�2N���S
,

b3 =
f�q��nq

N+�2N���S
, b4 =

1

N− , �30�

c1 = N+�1 +
�f�q��2�nq�nq + 1�

2N���S
	−1

,

c2 = N+� �2N���S

f*�q��nq + 1
+

f�q��nq

�2N���S
	−1

,

c3 = N−� f*�q��nq + 1
�2N���S

+
�2N���S

f�q��nq
	−1

,

c4 = N−�1 +
�f�q��2�nq�nq + 1�

2N���S
	−1

�31�

with N+=�1+nq�f�q��2 / �2N���S� and N−

=�1+ �nq+1��f�q��2 / �2N���S�.
Equation �24� allowed us to directly determine T↑ and T↓

as functions of the incident amplitudes I↑ and I↓ and the M
matrix elements Mij. One can easily show that

T↑ =
M33I↑ − M13I↓

M11M33 − M13M31
�32�

and

T↓ =
M11I↓ − M31I↑

M11M33 − M13M31
. �33�

However, now we will define more appropriate coefficients,
considering that the incident electron is only spin up �only
spin down�, which means I↑�0 and I↓=0 �I↑=0 and I↓�0�.
The new amplitudes are defined below:

T↑↑ =
T↑
I↑

=
M33

M11M33 − M13M31
, �34�

T↑↓ =
T↓
I↑

=
− M31

M11M33 − M13M31
, �35�

T↓↑ =
T↑
I↓

=
− M13

M11M33 − M13M31
, �36�

T↓↓ =
T↓
I↓

=
M11

M11M33 − M13M31
. �37�

The meaning of the coefficients �34�–�37� is described as
follows: T↑↑ is the probability amplitude of a spin up incident
electron to be transmitted through the barrier without spin
flip, while T↑↓ is the probability amplitude of a spin up elec-
tron to be transmitted flipping its spin. An analogous expla-
nation follows for a spin down incident electron, being the
amplitudes given by T↓↑ for flipping its spin in the tunneling
and T↓↓ for conserving its spin. The exact expressions result-
ing from the above are very complicated. Instead of showing
them we will proceed taking the limit of low temperatures,
that implicates in nq→0 and some simplifications take place.
In fact, when nq→0 we have b3=c2=c3=0, b1c1=b4c4=1,
b2c4=�=−f*�q� /�2N���S and we put the matrices M2 and
M4 in the following form:

M2 = �A �B

0 B
	, M4 = �A� �B�

0 B�
	 . �38�

When surface magnons must be considered the dimension 	
must be small compared to the barrier effective thickness,
and another approximation can be made, i.e., we can expand
the matrices A, A�, B, B� in k	→0. Then after a bit of alge-
bra the final result M =M1M2M3M4M5 is

M = �M1↑
−1CM5↑ 2�M1↑

−1CM5↓

0 M1↓
−1CM5↓

	
+ 	 �MAC + CMA� ��MA + MB��C + 2�CMB�

0 MBCMB�
	

+ O�	2� , �39�

where MA, MA�, MB and MB� the residual matrices of A, A�,
B and B�, respectively, coming from the approximation k	
→0. We wrote them below:

MA = � 0 − 1

�k+�2 0
	, MB = � 0 − 1

�k−�2 0
	 ,

MA� = � 0 − 1

�k+��2 0
	, MB� = � 0 − 1

�k−��2 0
	 .

Keeping terms to the zero order, i.e., neglecting the 	 term,
we have

M11 =
1

2
eik↑���1 +

k↑�

k↑
	cosh��d� + i� �

k↑
−

k↑�

�
	sinh��d�� ,

M13 = �eik↓���1 +
k↓�

k↑
	cosh��d� + i� �

k↑
−

k↓�

�
	sinh��d�� ,
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M31 = 0

M33 =
1

2
eik↓���1 +

k↓�

k↓
	cosh��d� + i� �

k↓
−

k↓�

�
	sinh��d�� .

We calculated the transmission amplitudes by the formu-
las �34�–�37�. The results are shown below, for the transmis-
sion probabilities

�T↑↑�2 =
4

�1 +
k↑�

2

k↑
2 	2

+ � �k↑
2 + �2��k↑�

2 + �2�
k↑

2�2 	sinh2��d�
,

�40�

�T↑↓�2 = 0, �41�

�T↓↑�2 =
�f�q��2�T↑↑�2�T↓↓�2

2N���S ��1 +
k↓�

2

k↑
2 	2

+ � �k↑
2 + �2��k↓�

2 + �2�
k↑

2�2 	sinh2��d�� , �42�

�T↓↓�2 =
4

�1 +
k↓�

2

k↓
2 	2

+ � �k↓
2 + �2��k↓�

2 + �2�
k↓

2�2 	sinh2��d�
.

�43�

The above equations are in absolute agreement with what
one could expect intuitively. At low temperatures, only mag-
non emission is allowed and for this reason it is required that
�T↑↓�2=0. The direct tunneling probabilities �conserving spin�
are those obtained for a particle without spin24 in an asym-
metric barrier, while the magnon-assisted transmission coef-
ficient �flipping spin� is proportional to some function de-
pending on the elctron-magnon coupling �f�q��2 /2N���S.
Taking into account first-order terms in 	 the spin-flip trans-
mission probability will be augmented. For low voltages, the
above expressions can be approximated because �d�1,
yielding

�T↑↑�2 =
16k↑

2�2

�k↑
2 + �2��k↑�

2 + �2�
exp�− 2�d� , �44�

�T↑↓�2 = 0, �45�

�T↓↑�2 =
64�f�q��2

2N���S
k↓

2�2

�k↓
2 + �2��k↑�

2 + �2�
exp�− 2�d� , �46�

�T↓↓�2 =
16k↓

2�2

�k↓
2 + �2��k↓�

2 + �2�
exp�− 2�d� . �47�

One can see clearly that the above transmission coefficients
are products of the tunneling coefficient for a spin-0 particle
with some coupling function and have the same form of that
used by Bratkovsky18 to describe magnetic tunneling junc-
tions. One can find corrective terms by solving the M matrix
directly without making approximations. In the analysis we

have considered perfect interfaces and none impurity scatter-
ing centers inside the barrier. The obtained coefficients are
symmetric with respect to the tunneling from left to right
electrode and in the opposite direction. These effects will
lead to an asymmetric behavior of the conductance with the
applied voltage17 and/or resonant effects.18 The transmission
coefficients at higher temperatures can be obtained intu-
itively. To zero-order approximation at a given temperature
the magnon number is not zero and absortion processes can
occur. In this way we have

�T↑↑�2 =
16k↑

2�2

�k↑
2 + �2��k↑�

2 + �2�
exp�− 2�d� , �48�

�T↑↓�2 =
4�f�q��2nq

2N���S
16k↑

2�2

�k↑
2 + �2��k↓�

2 + �2�
exp�− 2�d� , �49�

�T↓↑�2 =
4�f�q��2�nq + 1�

2N���S
16k↓

2�2

�k↓
2 + �2��k↑�

2 + �2�
exp�− 2�d� ,

�50�

�T↓↓�2 =
16k↓

2�2

�k↓
2 + �2��k↓�

2 + �2�
exp�− 2�d� . �51�

In fact, with increasing temperature, corrections to the trans-
mission coefficients are needed. However, the above results
can explain the main transport properties in magnetic tunnel
junctions with good accuracy. It must be pointed out that
f�q� is also a function of k and k�, weighted by the exchange
integral J�x ,x��. The omission is only for sake of conve-
nience.

Another way to understand the above formulae is to write
down Feynmann graphs for the processes, but this will not be
shown here. The electron interact with the magnon field and
with the barrier. To zero order in 	, the electron interact with
the surface magnons before transmission or is transmitted
directly. The electron-magnon interaction is represented by a
coupling function, while for direct transmission the coupling
constant is unitary. In the magnon processes we conservation
of the overall momentum of the electron-magnon system is a
requirement. The interaction with the barrier is always the
same as for a particle of spin zero, being the coupling exactly
equal to the transmission coefficient, using the appropriate
incident and transmitted momentum.

As a last point in this section, it is important to observe
that in our formulae only the z component of total momen-
tum of the incident and transmitted electron must be consid-
ered. When considering the lattice potential of the ferromag-
netic metals the transversal momentum is quantized and the
total energy of an electron incident at the interfaces must be
weighted by some constant � relating the energy E with its
component Ez perpendicular to the barrier by Ez=�E, as
shown in Ref. 25.

IV. THE MAIN TRANSPORT PROPERTIES OF A TYPICAL
MTJ

With the spin-dependent transmission coefficients for a
typical MTJ in hands, the main transport properties such as
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the conductance and magnetoresistance can be easily ob-
tained. The total tunneling current flowing through the junc-
tion is given by, quite generally,

I =
2�e



� d��

���


T������N�
L�� − V�N��

R ���fL�� − V�
1

− fR���� − T������N�
L�� − V�N��

R ���fR���
1 − fL�� − V��� ,

�52�

where �=E−EF, EF is the Fermi energy, N�
���� is the density

of states for electrons with spin �, �= �R ,L� denote the elec-
trode, and f���= �exp
� /kBT�+1�−1 is the Fermi-Dirac distri-
bution, kB is the Boltzmann constant, and T is the absolute
temperature. The resistance is readily obtained by R=G−1,
where G=dI /dV is the differential conductance. The magne-
toresistance is is defined as

�R

R
=

RAP − RP

RAP
. �53�

Note that the above definition is limited to 100%, since
RAP�RP. In the parallel �P� configuration the magnetization
has the same orientation along the z axis for FMI and FMII,
being the majority and minority spin bands the same for both
electrodes, while in the antiparallel �AP� scheme, the mag-
netization of the ferromagnetic electrodes has opposite ori-
entations and, in this case, the majority spin band in FMI is
the minority spin band in FMII and vice versa. In the low bias
regime, we are interested in voltages smaller than the Fermi
energy and only the states near the Fermi level will contrib-
ute to the transport, so we can expand the density of states in
a Taylor series as follows:

N�
���� = �

n=0

�
1

n!
�dnN�

����
d�n �

�=0
�n. �54�

Taking into account identical electrodes and the low bias
regime, we can expand these expressions to first order with
good accuracy. The s band can be represented by a parabolic
dispersion relation and density of states N���E−��, where
����= ↑ , ↓ � gives the bottom of the spin band, with ��↑
−�↓�=2�, as in Refs. 12 and 18. However, we consider here
cases more general than the parabolic dispersion, with the
band structure described through the following set of
parameters:19

r � �NM

Nm
	

F
,

� � �dNM/dE

dNm/dE
	

F

,

� � � 1

Nm

dNm

dE
	

F
, �55�

with all quantities evaluated at the Fermi level, and m and M
stand for minority and majority spin bands, respectively.
Now we break the total current �52� into a part not involving
spin flip �direct current� and another involving magnon scat-

tering �inelastic current�. The direct current for a perfect MTJ
�the probabilities for tunneling from right to left side elec-
trode and in the opposite direction are the same� is written as
follows:

I =
2�e



�

0

V

d�
T↑↑���N↑
L�� − V�N↑

R���

+ T↓↓���N↓
L�� − V�N↓

R���� . �56�

The transmission coefficient are given by Eqs. �48� and �51�.
Substituting k�=�2me��−��� /
2 and �=�2me�V0−�� /
2

with V0���, we have

T↑↑ =
16��↑ + ���

V0�1 +
�↑ + �↑�

V0
	 exp
− 1.024d�V0�exp���d

�V0
� ,

T↓↓ =
16��↓ + ���

V0�1 +
�↓ + �↓�

V0
	 exp
− 1.024d�V0�exp���d

�V0
� ,

where d is given in Å and the energies in eV. It was shown in
a previous work19 that when T↑↑=T↓↓ we can calculate the
ratio of the densities of states r at the Fermi level using only
the experimental value of �R /R at zero bias

r =
1

1 − ��R

R
�

V=0

+� 1

�1 − ��R

R
�

V=0
	2 − 1, �57�

which does not depend on the barrier parameters. This ex-
pression needs a little modification when T↑↑�T↓↓, and we
have

r �
1 + �↓/�↑

2�1 − ��R

R
�

V=0
	 +� �1 + �↓/�↑�2

�1 − ��R

R
�

V=0
	2 −

�↓
�↑

.

�58�

However, we will not take into consideration these correc-
tions in the direct current and we consider �↓ /�↑�1, being
the final result for the direct conductance at T= 0K

Gd
�P� =

2�e2



exp
− 1.024d��0�
Nm

F�2��1 + r2�exp� �Vd

2��0
�

+
��1 + r��

3 � �dV2

4��0

exp� �Vd

2��0
�

+ V�exp� �Vd

2��0
� − 1	�

−
�2�1 + �2�

2
exp� 3�Vd

10��0
��V2 +

�V3d

10��0
	� �59�

and
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Gd
�AP� =

2�e2



exp
− 1.024d��0�
Nm

F�2�2r exp� �Vd

2��0
�

+
��r + ��

3 � �dV2

4��0

exp� �Vd

2��0
�

+ V�exp� �Vd

2��0
� − 1	�

− �2� exp� 3�Vd

10��0
��V2 +

�V3d

10��0
	� . �60�

Now we will analyze the magnon-assisted tunneling to
investigate the zero-bias anomaly and the temperature depen-
dence. The transmission coefficients �49� and �50�, in energy
variables, are written in the following way:

T↑↓ = ���,��
n���
N���S

16��↑ + ���

V0�1 +
�↑ + �↓�

V0
	

�exp
− 1.024d�V0�exp���d
�V0

� ,

T↓↑ = ���,��
n��� + 1

N���S
16��↓ + ���

V0�1 +
�↓ + �↑�

V0
	

�exp
− 1.024d�V0�exp���d
�V0

� ,

where ��� ,��=2�f�� ,���2g��� is the magnon density of
states. The parameter g��� is related to the Jacobian of the
transformation of the sum on all the magnon wave vectors q
allowed to an integral on the magnon energy �, n���
= �exp
� /kBT�−1�−1 is the magnon number, given by the
Bose-Einstein distribution. The emission and absortion cur-
rents are written as follows:

Iem =
2�e



� d�� d�
T↓↑����N↓

L�� − V + ��N↑
R���

�fL�� − V + ��
1 − fR���� − T↓�↑���N↑
L�� − V + ��N↓

R���

�fR�� + V − ��
1 − fL����� , �61�

Iabs =
2�e



� d�� d�
T↑↓����N↑

L�� − V + ��N↓
R���

�fL�� − V + ��
1 − fR���� − T↑�↓���N↓
L�� − V + ��N↑

R���

�fR�� + V − ��
1 − fL����� . �62�

Neglecting the temperature effects on the Fermi-Dirac distri-
butions they become steplike functions. We consider that
both the density of states and the transmission coefficients
are constant in the integration interval and take the derivative
with respect to the applied voltage V to obtain the conduc-
tance. One can use as the magnon dispersion relation a
simple isotropic parabolic dependence, i.e., 
�=Em�q /qm�2,
where Em is related to the Curie temperature by the mean-

field approximation Em=3kBTC / �S+1�, and qm is the radius
of the first Brillouin zone.10 In other words Em is the maxi-
mum magnon energy �high energy cutoff�.1 However, we
have considered for the magnon density of states a general
expression of the form ����=a�nexp
−b��−�0�m�, then we
find

Gem =
32�e2a�↓

N���SV0
exp
− 1.024d�V0��N↓

L�0�N↑
R�0�

+
�↓�

�↓
N↑

L�0�N↓
R�0�	�

�c

V+kBT

d��n

�exp
− b�� − �0�m��1 +
1

exp� �

kBT
� − 1� , �63�

Gabs =
32�e2a�↑

N���SV0
exp
− 1.024d�V0��N↓

L�0�N↑
R�0�

+
�↑�

�↑
N↑

L�0�N↓
R�0�	�

�c

V+kBT

d��n

�exp
− b�� − �0�m�
1

exp� �

kBT
� − 1

. �64�

The total conductance is simply given by G=Gd+Gem
+Gabs. For the sake of simplicity we make n=1 and m=2 in
the magnon density of states �another possibility is to choose
n=1, m=1, �0=0� and this choic naturally includes a cutoff
in the magnon spectrum. With the following definitions:

�1�V� = �
�c

V+kBT

d�� exp
− b�� − �0�2� ,

�2�V� = �
�c

V+kBT

d�� exp
− b�� − �0�2�
1

exp� �

kBT
� − 1

we obtain

�1�V� =
1

2b

e−b��0 − �c�2

− e−b�V + kBT − �0�2

+ ��b�0Erf
�b�V + kBT − �0�� + Erf
�b��0 − �c���
�65�

and

�2�V� =
kBT�b�

2b
exp� 1

4b�kBT�2 −
�0

kBT
�

� �Erf�1 + 2�bkBT�V + kBT − �0�
2�bkBT

�
− Erf�1 + 2�bkBT��c − �0�

2�bkBT
�	 , �66�

where Erf�x� is the error function, defined below:
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Erf�x� =
2

��
�

0

x

exp
− t2/2�dt .

�2�V� is zero for T= 0K meaning that absorption processes
do not contribute to the current at extremely low tempera-
tures. It is also convenient to define the expressions below

WP
1 � �Nm

F �2��↓
�↑

+
�↓�

�↑
	r , �67�

WP
2 � �Nm

F �2�1 +
�↓ + �↑� + �↓�

�↑
	r , �68�

WAP
1 � �Nm

F �2��↓
�↑

+
�↓�

�↑
r2	 , �69�

WAP
2 � �Nm

F �2�1 +
�↓
�↑

+
�↑� + �↓�

�↑
r2	 . �70�

Notice that the functions WC
i defined above are related only

to the density of states of the electrons in the electrodes. The
desired result is

Gem
P + Gabs

P =
32�ea�↑

N���SV0
exp
− 1.024d�V0�
WP

1 �1�V�

+ WP
2 �2�V�� , �71�

Gem
AP + Gabs

AP =
32�ea�↑

N���SV0
exp
− 1.024d�V0�
WAP

1 �1�V�

+ WAP
2 �2�V�� . �72�

In Fig. 2 we show the resistance obtained with the formu-
las above, at T=0 K and at room temperature T=300 K. The
experimental data was taken from Refs. 2, 3, and 10 and we
have used in the theoretical calculations the following pa-
rameters: d=1.0 nm, V0=3.0 eV, Nm

F =1.0 in normalized
units, r=2.21, �=0.1, �=2.85, and �=0.1. The parameter
2a�↑ /N���S acts as TJ /Td in the previous works10,19 and we
have used 2a�↑ /N���S=1/35. The parameters appearing in
the magnon spectrum are �0=16 meV, �c=4 meV, and b
=500 eV−2. The magnon density of states here is not of the
form �� as one would expect for surface magnons, however,
the chosen spectral density eliminates the divergence at �
=0 coming from the Bose-Einstein distribution and the low
cutoff frequency �c could be zero. The value of �0 agrees
with the experimental data of the Ref. 1. We set functions Wi

to be WP
1 =WP

2 /2=1.5�Nm
F �2r and WAP

1 =WAP
2 /2= �Nm

F �2�1.2
+1.7r2�. It is considered that the direct current at T=0 K and
T=300 K are the same �except for an offset V→V+kBT at
T=300 K�, which means that we neglect temperature influ-
ences on the softening of the Fermi-Dirac distributions. The
thermal effects enter only via the magnon processes. The
exact temperature dependence depends on the magnon den-
sity of states. The factor �2�V� is the main responsible for
the temperature dependence. In our model the temperature
dependence is proportional to kBT, though it varies according
to the choice of the magnon spectrum. The MR decreases

with increasing temperature ��R /R=25% at T=0 K and
�R /R=20% at T=300 K�, as one should expect, due to the
fact that, for the AP alignment the resistance decays faster
than for the P alignment. It is also a consequence of the
magnon processes, which depends on the majority spin
bands product NM

F NM
F for AP configuration and on Nm

FNM
F for

P. In Ref. 20 the existence of an inelastic spin-independent
conductance is suggested �due to phonon excitation and bar-
rier imperfections, for example� and the thermal effects in
the Fermi-Dirac distributions seem to be important as pro-
posed in Ref. 3. The behavior of a perfect MTJ is well ex-
plained mainly at low temperatures. The zero-bias anomaly
tends to disappear with increasing temperature when the
thermal effects on the Fermi-Dirac distributions is taken into
account. The asymmetric behavior of the conductance with
the bias voltage17 in practical MTJ’s can be explained mak-
ing the densities of states different from one electrode to
another. The majority and minority spin bands may change
from one electrode to another due to an impurity scattering
center inside the barrier and/or imperfection and roughness
of the interface surfaces. We have considered along this pa-
per a simple band structure and we left the discussion of a
realistic electronic structure of excited electrons as done in
Ref. 21 in transition ferromagnetic metals aside.

V. CONCLUSIONS

In the present contribution we analyzed rigorously the
spin-dependent transmission coefficients in a typical MTJ.
The formulas obtained here agrees with both the intuition
and the expressions used in Ref. 18 and allowed one to ex-
plore the main transport properties such as bias and tempera-
ture dependence of the conductance and MR in a perfect
MTJ. We have presented a consistent study of the voltage

FIG. 2. Resistance as a function of the voltage bias for the AP
and P configurations: the experimental results �dotted lines� are
taken from Refs. 2, 3, and 10 and the theoretical ones �solid lines�
are calculated with our formulas, using the following parameters:
d=1.0 nm, V0=3.0 eV, Nm

F =1.0 in normalized units, r=2.21, �
=0.1, �=2.85, and �=0.1, 2a�↑ /N���S=1/35, �0=16 meV, �c

=4 meV, and b=500 eV−2 eV. The resistances are given in arbitrary
units, normalized to the peak value at zero bias.
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and temperature dependence of the “giant” magnetoresis-
tance in ferromagnetic tunneling junctions. Our approach in-
cludes �a� a rigorous analysis of the spin-dependent transmis-
sion coefficients where conduction electrons were considered
to be of s character and modeled by plane waves, interacting
with spin wave excitations mainly at the interfaces between
metallic ferromagnet and nonferromagnetic insulator. The
electron-magnon interaction was considered as a perturba-
tion. �b� Different variations of the density of states for each
spin band with voltage. �c� Magnon assisted inelastic tunnel-
ing near zero bias, which enter via the transmission coeffi-
cients. We found that taking into account all those effects is
essential to fully explain experimental results for the voltage
range between 0 and 500 mV. Temperature effects are also
taken into consideration. The role of the different parameters
used in the theory was discussed in Ref. 19: some of them
�d ,�0 ,�� determine the absolute value of the resistance at
zero bias, which in turn is a scale factor in the theory; a
different set, related to the band structure �r ,� ,��, mainly
monitors the global behavior with voltage and the value of
the junction MR. To adjust our results with selected experi-
mental data, we have taken � ,��0, but as shown in Ref. 12,
this scenario is not unique and depends on the topology of
the bands that contribute to the current; and finally, the be-
havior near zero bias �zero bias anomaly�, with a rapid de-
crease of the resistance for the AP configuration up to
100 mV, is ascribed to magnon-assisted tunneling. Our esti-
mation of 2a�↑ /N���S�TJ /Td�1/40 seems to be more re-

alistic than previous estimations.10 Our calculation is in ex-
cellent agreement with the experimental data �see Fig. 2�.

Asymmetric behavior of the conductance with the bias
voltage 
G�V��G�−V�� can be ascribed to imperfections and
roughness in the interface surfaces as well as to impurity
inside the barrier.18 Another mechanism is a different cou-
pling of majority and minority spin electrons to the spin
waves as described in Ref. 17. However, our model explains
the transport properties of a perfect ferromagnetic tunneling
junction �perfect interfaces and no impurities inside the in-
sulating barrier�. The conductance asymmetries could be
taken into account by making the densities of states different
from one electrode to another.

Finally, the temperature effects have entered only via
magnon scattering and the dependence is a function of the
magnon spectrum. In Ref. 3 the thermal smearing in the
Fermi-Dirac distribution of the tunneling electrons is ana-
lyzed and in Ref. 20 another inelastic mechanism which is
spin independent is proposed to give an important contribu-
tion to the temperature dependence.
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