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Short-range-order effects on the ESR spectra of a spin cluster

Alzira M. Stein and G. G. Cabrera
Instituto de Fisica "Gleb Wataghin,

"
Universidade Fstadual de Campinas, l3IOO-Carnpinas, Sao Paulo, Bra.il

L. M. Falicov
Departinent of Physics, University of Califoinia, Berkeley, Califoritia 94720

(Received 17 November 1980)

Using the Kikuchi counting for the Ising problem, we present a theory which takes into ac-

count short-range-order effects in the formation of spin clusters. The gneiss molecular-'field

treatment is thus improved, since partial spin alignment is allowed in the paramagnetic phase.

The above approach is used to study the influence of short-range order on the electron-spin-

resonance (ESR) spectra of a spin system. Two main effects are then predicted: (i) One is re-

lated to a shift of resonances towards higher frequencies when the temperature is lowered. This

effect is induced by effective local fields generated by short-range order. (ii) The other deals

with multiple splitting of lines as a manifestation ot transitions between states corresponding to

different cluster configurations. These results are in good qualitative agreement with experi-

ments.

I. INTRODUCTION

The widely used Weiss molecular-field theory of
magnetism' describes a second-order phase transition
where no correlations of spins are present in the
paramagnetic (disordered) phase. The onset of the
ordered phase (ferro- or antiferromagnetic) is accom-
panied by the production of long-range order and no
fluctuations are allowed in the paramagnetic phase,

Still within the effective field theories, the Weiss
molecular field treatment can be improved allowing

partial spin alignments in the formation of clusters in

the paramagnetic region. ' A series of approxima-
tions, taking into account the short-range order, can
be formulated. ' From those, the method devel-

oped by Kikuchi' can be extended to successive or-
ders of approximations as long as the order of mul-

tisite correlations is increased. The limiting cases of
the single site and pair correlations correspond to the
so-called Bragg-Williams and Bethe approximations,
respectively. The Kikuchi approximation of count-
ing for the entropy has recently been applied in a

series of papers dealing with the theory of order-
disorder in binary alloys. ' We shall folio~ closely
the approach of Ref. 5 in order to treat the Ising
problem at the level of the Bethe approximation.

The gross features of the model are summarized
below.

(a) The transition temperature (for both, the ferro-
and antiferromagnetic cases) is lowered in relation to
the molecular-field result (which in turn is an overes-
timation of T, ) The Bethe approx. im. ation yields

ln[Z/(Z —2) 7

where Z is the number of nearest neighbors and J is
the exchange constant. For Z =2 (linear chain) the
result given by the model is exact and no phase tran-
sition is present. For Z ~3 we do obtain a phase
transition but the result does not depend on the di-
mension or the crystalline structure employed. The
only relevant parameter, apart from the exchange
constant J, is Z, the number of nearest neighbors
(called coordination number), and in some respects
the approximation shows topological similarities with
the linear chain (it can be pictured in the form of
abstract structures called Cayley trees).

(b) The critical behavior, in the cases where we ob-
tain a phase transition, is similar to that of the molec-

ular field. A critical exponent P = —, is obtained for
the magnetization.

(c) Short-range order is present in the paramagnet-
ic phase in contrast with the molecular-field theory.
This short-range order produces a tail in the specific
heat as well as light deviations in the susceptibility
when compared with the Weiss model.

In this paper we want to describe some phenomena
related to electron-spin resonance (ESR) which may
be attributed to short-range-order correlations.
Those effects include shifting of ESR resonances to-
ward higher fields in the paramagnetic phase when
the temperature is lowered toward the critical point,
indicating the appearance of an internal field caused
by coupling between neighboring spins, ' Simultane-
ously with this effect, a multiple splitting of ESR
lines has sometimes been observeds as a possible
manifestation of clustering.

The theory developed in this paper explains quali-
tatively the phenomena mentioned above, The fer-
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romagnetic and antiferromagnetic cases can be treat-
ed simultaneously by dividing the lattice into two

equivalent and interpenetrating sublattices, which we
shall call a and P. All the structures covered in this
work are those where a sites have nearest neighbors
of the P type only, and vice versa (as in the bcc struc-
ture).

In the next section the Kikuchi method is present-
ed and the short-range and long-range parameters are
calculated for both the ferromagnetic and antifer-
romagnetic cases when an external magnetic field is

applied (as in a typical experiment of ESR). When-
ever possible (Z =4) comparisons with Onsager's
exact solution9 are presented. The long-range-order
parameters are identified with the sublattice magneti-
zations, while the short-range parameter is related to
correlations of neighboring spins (and therefore is

proportional to the internal energy per spin when
only nearest-neighbor interactions are considered).

With the knowledge of the short- and long-range-
order parameters, the site and bond probabilities are
straightforwardly calculated. From this information
the probabilities of formation of various clusters are
inferred and the effective field at a given site can be
computed as a function of temperature.

In Sec. III we show the resonant results for indivi-
dual clusters and also the average case when superpo-
sition of the different clusters are considered.
Whether individual clusters resonances can be ob-
served in an actual experiment wi11 depend on the ex-
perimental resolution.

In the last section we present the final comments
and discuss the validity of our model. Since our
method is an effective-field approach it will be no
longer valid within the critical region. "Wrong" criti-
cal exponents are therefore predicted. It is worth re-
marking here that we are mainly interested in short-
range-order properties which develop themselves in

the paramagnetic phase far from the critical region.
Classical molecular-field theory fails in describing
such effects.

II. KIKUCHI APPROACH AND THE
BETHE APPROXIMATION

As described in the Introduction we consider a lat-

tice divided into two equivalent sublattices, o, and P,
and two states per site called A and 8 (spin up and
down). All the nearest neighbors of an a site are of
P type and vice versa.

We define the site probabilities PI( as being the
probability of finding a spin in the state K( Jt = A, 8)
at a site of the v type (v = a, P). We therefore end
up with four site probabilities Pg, Pa, p&p, and pap.

For the pair probabilities all the possibilities are
listed in Fig. 1 along with the exchange energy for in-

teracting pairs. For the structures considered here we

BOND PROBABILITY INTERACTION ENERGY

aP

aP

etP

FIG. 1. The different bond configurations for the struc-
tures considered in this paper, where all the nearest neigh-
bors of an o. site are of the P type and vice versa. The pair
exchange energy is also given along with the bond probabili-
ties.

only get four bond probabilities denoted by p», p»,
Pa~ s and Paa

Normalization requires the following constraints:

and

pg +pa = 1,pg +pa = 1

PAA +PAa +PaA +Paa

ap ap p
PAA +PaA PA

PaA +Paa Pa

(3)

(4)

So we are left with only three independent parame-
ters. We choose them as being two long-range order
parameters (LROP)

M. =p~ —pa ~ Mp= pa —p~, (6)

K=J X o, rr, —e X. o, ,
(ij) i

where the bracket (ij) means sum over nearest
neighbors. The o-; are operators which can take only
the values +1 (corresponding to A) and —1 (corres-
ponding to 8). When J = —

l J l ( 0 we get the fer-
romagnetic case, while antiferromagnetism is ob-
tained for J =

I J I & o.
With the use of diagrams from Fig. 1 and definition

(7) the internal energy can be straightforwardly writ-
ten as

M —Mp

2
"

2

which can be identified with the sublattice magnetiza-
tions, and a short-range order parameter (SROP)

'g PAA +Paa PAa PaA
ap ap ap ap

which corresponds to a correlation function between
neighboring spins.

The Hamiltonian of our system is the usual Ising
Hamiltonian with a Zeeman term
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2
Z X pal IllPKL

K, L =A, B
(10)

t

Using the definitions (6) and (7) and the con-
straints (2) —(5) we can write the entropy in terms of
parameters M, Mp, and q. The free energy

F(M, Mp, q) =E —TS

is then minimized with respect to variations of those
parameters, which yields the following transcendental
conditions

ap ap
PAA PBB —4J/k TB

ap ap (12)

and

r ap'Z
PAB

ap
, PBA

PA PA

, PaPa,

p'Z —I
PA Pa

, PAPB,

ap 'Z
—4H/I. T PA AB

ap
, PBB

(13)

(14)

The solutions provided by Eqs. (12)—(14) have the
following general properties.

(i) For Z =2 and H =0 no phase transition is ob-
tained. The SROP can be written in closed form

st= —tanh(J/ka T) (15)

which is the exact solution of the Ising model for the.
linear chain.

(ii) For the ferromagnetic case J =- —
~
J

~
( 0 and

without external field (H =0) symmetry requires

(16)
and

Up to this point no approximation for the Ising
problem has been made. The Kikuchi method' is an
approximate counting of states for the entropy.
Within the Bethe approximation Kikuchi's result is

r

S = Nit'a
2 X X (Z —I)pit" lnptr"

v=ap K A, a

I

I

c=22 ce 289
T = kBT/iJi

derstood in terms of the topological similarities
between Cayley trees and the linear chain. ' For
both structures only open trajectories are possible.

(v) The ferromagnetic linear chain with external
field (along the spin direction) can be computed ex-
actly and the results for the magnetization M and the
parameter q are given in the Appendix.

In what follows we will use reduced variables de-
fined by

kBT
(19)

and

(20)

FIG. 2. The short-range order parameter (SROP) g as a
function of the reduced temperature. We are showing here
the Z =4 antiferromagnetic case (so what we are actually
displaying is —rt= InI) in fine continuous line and compar-
ing it with the exact Onsager solution for the two-dimen-
sional case (thick continuous line). The paramagnetic solu-
tion is shown in dashed line and corresponds to the expres-
sion for the linear chain. The transition temperatures are in-

dicated by arrows. Note that within the Bethe approxima-
tion the transition temperature is overestimated (1-,B=2,89)
and that the SROP has a discontinuous derivative at 7,
The finite jump in the derivative is associated to a finite
discontinuity of the specific heat at the critical point. In con-
trast, the exact solution displays a logarithmic singularity of
the specific heat at the transition temperature. The Bethe
solution (fine continuous line) and the linear-chain solution
(dashed line) should coincide in the paramagnetic phase
(they are slightly shifted in the figure for graphical purposes).

PA PA & PAB PBA (17)

Equation (13) is then a trivial identity and the mag-
netization M and the SROP g can be obtained nu-

merically from the coupled relations (12) and (14).
The transition temperature is given by relation (1).

(iii) In the antiferromagnetic case (with H =0), we

have J =
~
J

~
)0 and also due to symmetry

1.0

M =Mp=M (18)

The transition temperature is also given by relation
(1). The symmetry condition (18) is no longer valid

when an external magnetic field is applied.
(iv) For all cases the paramagnetic solution corre-

sponds, within this approximation, to the linear-chain
solution given by relation (15). This fact can be un-

I

1.0 2.0 3.0 4.0 5.0

FIG. 3. The magnetization M for the ferromagnetic case,
for Z =4 nearest neighbors, when an external magnetic field
of magnitude h =10 2 is applied. A smooth variation of
parameters as functions of temperature is now obtained.
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TABLE I. Cluster probabilities for Z =4 when the central site is of the o. type. The effective
field h„at the central site is also shown.

Nearest neighbors Probabilities

Central spin: (A, n)

p a(p aP/p a)4

4PA (&AB/&A ) (PAA'/PA )'

h )'(p A

4~A (~AB/I A ) (I AA /PA )

p a(p aP/p a) 4

Central spin: (B, n')

p a(p aP/p a) 4

4I B (I BB/I B ) (I, BA /I 8 )

6I B (PBB/I B ) (PBA /~B )

41 (I'/I )(I'/P )'

p a(p aP/p a) 4

Comparison with Onsager's exact solution for the
two-dimensional case is in order. In Fig. 2 we show
the SROP for Z =4 nearest neighbors as a function
of v. A fairly good agreement is found with the ex-
act solution, especially in the paramagnetic phase. At
the transition point there is a finite discontinuity of
the slope; this produces a finite jump in the specific
heat, a fact which is typical in effective-field theories.

When the magnetic field is turned on the variation
of q is smooth and no discontinuity appears in the
derivative. We show an example for the ferromag-
netic case in Fig. 3 where the magnetization is also
shown.

Once the statistical mechanics are solved through the
use of relations (12) to (14) the probabilities of for-
mation of the various clusters can be obtained. As
an example we list in Table I all the possible clusters
for Z =4 and their corresponding probabilities. The
effective field produced by the nearest-neighbor shell
at the central spin site is also shown. From these
results the resonant amplitudes and frequencies can
be straightforwardly calculated.

Xp[vKZ] =pa. , (22)

$ gp[vKlt] =p„"+pa =1 (23)

frozen environment. Thus the effective field in a
given site is constant during the process. In the case
7 =4 we have five such transitions, while for Z =6
we end up with seven lines. In order to describe the
above mentioned phenomena we have devised a spe-
cial notation for cluster configurations. Given a fixed
state K(K = A, B) at a central site of v type
(v = u, P), we denote by h, the configuration of the
shell of nearest neighbors. Thus for Z =4 we have
the following possibilities:

X = (AAAA), (AAAB), (AABB), (ABBB), (BBBB)
(21)

which correspond to the five transitions mentioned
above. The probability of formation of a certain clus-
ter will be written as p[vKA]. For Z =4 they are
listed in the last column of Table I. The following
properties are easily verified:

III. RESONANCE PHENOMENA

In studying resonances of clusters we have only
considered spin-flip transitions of the central spin in a

In addition, A. can be written as a set of two
numbers XA and A.B, which are the number of nearest
neighbors in states A and 8, respectively. We note
that

(24)
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and

a =h)k (25)

field present at the central site can be written as

— ' h+h (26)

where h„ is the effective field of configuration
A. = ()tqh. s) at the central site of the cluster. Values
of h & are displayed in Table I for Z =4. The total

]5 — T = 5.0

while explicit expressions for the probabilities
p[vtrh. zh.s] are given by

vv g vp

PK , , PK

V
pre (27)

where v and v' are nearest neighbors. The energy of
individual clusters, in units of

~ J~, is therefore given
by

(2g)

T =4.Q

where

(+1 if K =A
~sc = —1 ifK=B. (29)

M ]0
C

The statistical average over all the configurations
for a given v site yields the following mean field:

(h)„—= XX — A„+h (e '~" /Z)p[tK)t]

T = 3.4 where Z, is the partition function for the v site

(30)

M
0)

~~
M

C

Z„—= Xxe '"~"'p[vK)t] . (3 &)

The transitions considered here correspond to spin
flips of individual spins in a given effective field.
The latter effective field varies from cluster to clus-
ter. Individual clusters will be observed if the meas-

T = 2.9
C

e 50—

0)
C4

II

ei
Q ][ ~ ~

II

LA

II

0.2 3.8 4.2 7.8 8.2 0
0.10 0.180.20 0.22 0.245 0.30

FIG. 4. Line intensities for spin-flip transitions in frozen
cluster environments for different temperatures in the
paramagnetic phase. The case depicted here corresponds to
antiferromagnetic exchange (J & 0) for Z =4 nearest neigh-
bors, and the applied field in units of

~
J] is taken as

h =10 '. The resonance frequencies are indicated by arrows
in the lowest part of the graph. An n site has been chosen,
but no major differences appear for a P site in the paramag-
netic region.

FIG. 5. Line intensities for spin-flip transitions in a mean
effective field for different temperatures. The same cases
shown in Fig. 4 are taken in order to make explicit the net
shift of the effective field towards higher frequencies when
the temperature is lowered. The temperature variation of
the mean field is calculated through the use of relation (30)
in the main text, where all the possible clusters have been
superposed.
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FIG. 7. The mean-field case corresponding to the situa-
tions shown in the preceding figure. The resonance shift is
much larger now than in the antiferromagnetic case.

Q r

15—

10—

T=5.4

urement time is smaller than the characteristic decay
time of fluctuations. Otherwise the resonant
phenomenon will appear in terms of the mean effec-
tive field (30), where a weighted superposition of all

possible clusters is made.
For single spin-flip transitions in a cluster of con-

figuration A. the resonance frequency is given by

0 ~

0;2 3.8 4.2 7.8 8.2 11.8 12.2
GDR

cog" =—2 — I]), —h

and the corresponding amplitude for the transition, in
arbitrary units, is taken proportional to

FIG. 6. This figure is similar to Fig. 4, now displaying the
ferromagnetic case for Z =6 nearest neighbors. Seven lines,
corresponding to spin-flip transitions in individual clusters,
now appear. The applied magnetic field is h =10 '. The
critical temperature when no external field is present is

given by formula (1) and turns out to be v, =4.93. Observe
that symmetry of line intensities is markedly broken well be-
fore the transition temperature. Clustering favors the situa-
tion of mean field th„t over its counterpart of mean field
—tli„t. This effect is much weaker when we have antifer-

romagnetic exchange: The intensities of partner lines
remain more or less the same in the paramagnetic phase
(see Fig. 4 and Table II).

I i,
= I~ vKklrp [pter'k] e vKi/rp [ &~k] t (g3)

V

where K means the spin state complementary to K,

In Fig. 4 we show the different cluster lines for the
antiferromagnetic case for Z =4. The temperature is
lowered towards the Curie temperature. It can be
verified, looking at Fig. 5, that there is a net shift of
the mean effective field towards higher frequencies.

TABLE II. Line intensities for the different clusters as a function of temperature for the antifer-
rornagnetic case and Z =4. The cases shown in Fig. 4 are also included for comparison purposes.
The different lines are identified by their resonance frequencies. The transition temperature of this
system (when no external field is applied) is v, =2.89, and the. magnetic field is h =0.1.

1(8.2) I (7.8) 1(4.2) I(.2)

5.0
4.0
3.4
2.9
2.8
2.4
2.0

10.8
13.9
16.9
20.3
50.2
81.4
93.9

10.9
14.1
17.0
20.3
4.0
0.1
0.0

16.8
18,8
19.8
20.0
25.3
15.2
5.5

15.7
17,5
18.3
18.4
6.5
0.3
0.1

1,1

1.2
1,1

1.1
0.7
0.5
0.0
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TABLE III. Linc intensities for two lines from Fig. 6 as a

function of temperature. The lines are identified by their
resonance frequency. The transition temperature of this sys-

tem {J&0, Z =6) with no external field is v, =4.93. Units

are arbitrary but same normalization and same magnetic
field as in Table II are used.

TABLE V. Resonance frequency for the average effective
field spin-flip transition as function of temperature. This
table corresponds to the ferromagnetic case with Z =6
nearest neighbors and the applied magnetic field is h =0.1.
The critical temperature of this system (no external field) is

7,, =4.93.

&(8.2)

7.0
6.0
5.6
5.4
5.0
4.94

4.0
34

3.9
5.5
7.1

8.7
19.5
23.2
51.9
68.8
85.9

11.7
14.6
17.1
19.4
29.4
31.3
32.5
24.9
12,8

7.0
6.0
5.6
5.4
4.94
4.00
3.4

0.68
1.16
1.74
2.34
6, 10.

10,70
11.60

TABLE IV. Thc resonance frequency for a spin-flip tran-

sition in a mean effective field as a function of temperature,
The case considered here corresponds to antiferromagnetisrn
with Z =4 nearest neighbors. Thc applied field is II =0.1.

5.0
4;0
3.4
2.9
2.8
2.2
1.8

0,18
0,20
0.22
0.25
4.74
7.74
8.06

The same phenomenon appears more markedly in

Figs. 6 and 7 ~here we have depicted the ferromag-
netic case for Z =6 nearest neighbors. Since our in-

terest is primarily focused on the paramagnetic region
we have not shown examples of resonant lines for
temperatures corresponding to the ordered phase
(ferro or antiferromagnetic). On physical grounds we

expect saturation of the line of highest frequency
(which corresponds to a spin-flip transition in a per-
fectly aligned ferromagnetic or antiferromagnetic
cluster) along with a rapid decaying of all the other
lines. In Tables II and III we show some values of
line intensities for lower temperatures. The units are
arbitrary but all the intensities are normalized to the
same factor. Along with this process, we note that
the resonant frequency of the mean situation
(weighted average over cluster configurations) sh!fts
to the position of the perfectly ordered cluster line

when the temperature is lowered well into the or-

dered phase. This fact is shown in Tables IV and V
for the two examples worked out here.

The important point we want to emphasize is that
short-range order produces a net shift of the effective
field even in the paramagnetic phase (see Figs. 5 and

7). This effect has been observed experimentally's
and is absent in standard molecular-field theory.

IV. CONCLUSIONS

No satisfactory treatment of short-range order in

critical phenomena is readily available. The
renormalization-group approach" is well defined in

the so-called critical region, where the scaling hy-

pothesis is valid and where the behavior of the sys-

tem is dominated by long-range fluctuations.
The method presented in this paper is an effec-

tive-field theory which improves the results of the
classical gneiss molecular f'ield by taking into account
short-range order effects in the paramagnetic region.
Poor results concerning critical exponents are there-
fore expected. Ho~ever, for the disordered phase
the model is in good agreement when compared with

some exact solutions (see Fig. 2).
Concerning the ESR phenomena we may distin-

guish three important regions according to the tem-
perature.

(A) For high temperatures r = ka T/~ I l )) I no
effective coupling among nearest neighbors can be
detected. If the applied magnetic field is small (com-
pared to

~
J~) for high temperatures in the paramag-

netic phase we get

and

ap ep esp ep
P~~ =P~a =Paa =Pa~ =

4
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So one cluster of effective field h& is as likely to oc-
cur as the other cluster with inverted effective field
(—Ir„). The net result for the average field given by
expression (30) is

(/r)„=h

The short lifetimes of fluctuations for the different
clusters are approximately the same, no long-range
order is present (M =0) and no local effective field
is developed (short-range order absent). The only
transitions detected should correspond to spin-Aip
transitions in the applied field it (if detectable from
the background of rapid thermal fluctuations).

(B) As the temperature is lowered towards the crit-
ical point, thermal fluctuations slow down and short-
range order develops in the system inducing an effec-
tive local field. Up and down random orientations of
clusters still yield M =0 for each sublattice rnagneti-
zation. The induced effective field produces a shift
of the resonance frequency to higher fields as indicat-
ed by Figs. 5 and 7. Not all the fluctuations are
equally long lived now and some of the cluster lines
may appear in the form of a splitting of the spectrum
(if enough resolution is available). This is the regime
we are mainly interested to describe in order to make
connection with experimental works. '8 Our predic-
tions explain qualitatively the latter observations,

(C) For the critical region our model is not a good
approximation as it has already been discussed.
Moreover spin waves modes are absent in the Ising
magnet (no transverse coupling of spins is included)
and therefore our model should be looked at cau-
tiously in the ordered phase. %hen approaching the
critical region the dynamical character of the
phenomenon is extremely important. Long-range
and long-lived fluctuations (clusters of larger and
larger size) develop which eventualiy encompass the
whole system. The response is then mainly deter-
mined by those long-lived excitations; these decay in-
finitely slowly for wave vector k 0 (Iong-wave-
length fluctuations), and arise spontaneously as a

manifestation of symmetry breaking and long-range
order.

As far as the paramagnetic phase is concerned our
treatment is entirely satisfactory and extensions to
other lattice structures (such as the triangular lattice
and the fcc structure) are currently under study.
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