1,169 research outputs found
Electrical detection of 31P spin quantum states
In recent years, a variety of solid-state qubits has been realized, including
quantum dots, superconducting tunnel junctions and point defects. Due to its
potential compatibility with existing microelectronics, the proposal by Kane
based on phosphorus donors in Si has also been pursued intensively. A key issue
of this concept is the readout of the P quantum state. While electrical
measurements of magnetic resonance have been performed on single spins, the
statistical nature of these experiments based on random telegraph noise
measurements has impeded the readout of single spin states. In this letter, we
demonstrate the measurement of the spin state of P donor electrons in silicon
and the observation of Rabi flops by purely electric means, accomplished by
coherent manipulation of spin-dependent charge carrier recombination between
the P donor and paramagnetic localized states at the Si/SiO2 interface via
pulsed electrically detected magnetic resonance. The electron spin information
is shown to be coupled through the hyperfine interaction with the P nucleus,
which demonstrates the feasibility of a recombination-based readout of nuclear
spins
Surface electrons at plasma walls
In this chapter we introduce a microscopic modelling of the surplus electrons
on the plasma wall which complements the classical description of the plasma
sheath. First we introduce a model for the electron surface layer to study the
quasistationary electron distribution and the potential at an unbiased plasma
wall. Then we calculate sticking coefficients and desorption times for electron
trapping in the image states. Finally we study how surplus electrons affect
light scattering and how charge signatures offer the possibility of a novel
charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological
Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
Role of 20-Hydroxyeicosatetraenoic Acid in Mediating Hypertension in Response to Chronic Renal Medullary Endothelin Type B Receptor Blockade
BACKGROUND: The renal medullary endothelin (ET-1) system plays an important role in the control of sodium excretion and arterial pressure (AP) through the activation of renal medullary ET-B receptors. We have previously shown that blockade of endothelin type B receptors (ET-B) leads to salt-sensitive hypertension through mechanisms that are not fully understood. One possible mechanism is through a reduction in renal medullary production of 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE, a metabolite of arachidonic acid, has natriuretic properties similar to ET-B activation. While these findings suggest a possible interaction between ET-B receptor activation and 20-HETE production, it is unknown whether blockade of medullary ET-B receptors in rats maintained on a high sodium intake leads to reductions in 20-HETE production. METHODOLOGY/PRINCIPAL FINDINGS: The effect of increasing sodium intake from low (NS = .8%) to high (HS = 8%) on renal medullary production of 20-HETE in the presence and absence of renal medullary ET-B receptor antagonism was examined. Renal medullary blockade of ET-B receptors resulted in salt sensitive hypertension. In control rats, blood pressure rose from 112.8±2.4 mmHg (NS) to 120.7±9.3 mmHg (HS). In contrast, when treated with an ET-B receptor blocker, blood pressure was significantly elevated from 123.7±3.2 (NS) to 164.2±7.1 (HS). Furthermore, increasing sodium intake was associated with elevated medullary 20-HETE (5.6±.8 in NS vs. 14.3±3.7 pg/mg in HS), an effect that was completely abolished by renal medullary ET-B receptor blockade (4.9±.8 for NS and 4.5±.6 pg/mg for HS). Finally, the hypertensive response to intramedullary ET-B receptor blockade was blunted in rats pretreated with a specific 20-HETE synthesis inhibitor. CONCLUSION: These data suggest that increases in renal medullary production of 20-HETE associated with elevating salt intake may be, in part, due to ET-B receptor activation within the renal medulla
Deletion of Munc18-1 in 5-HT Neurons Results in Rapid Degeneration of the 5-HT System and Early Postnatal Lethality
The serotonin (5-HT) system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT) promoter. The majority of mutant mice died within a few days after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal survival
The malarial exported PFA0660w is an Hsp40 co-chaperone of PfHsp70-x
Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentrationdependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria
Blockade of Fatty Acid Synthase Triggers Significant Apoptosis in Mantle Cell Lymphoma
Fatty acid synthase (FASN), a key player in the de novo synthetic pathway of long-chain fatty acids, has been shown to contribute to the tumorigenesis in various types of solid tumors. We here report that FASN is highly and consistently expressed in mantle cell lymphoma (MCL), an aggressive form of B-cell lymphoid malignancy. Specifically, the expression of FASN was detectable in all four MCL cell lines and 15 tumors examined. In contrast, benign lymphoid tissues and peripheral blood mononuclear cells from normal donors were negative. Treatment of MCL cell lines with orlistat, a FASN inhibitor, resulted in significant apoptosis. Knockdown of FASN expression using siRNA, which also significantly decreased the growth of MCL cells, led to a dramatic decrease in the cyclin D1 level. β-catenin, which has been previously reported to be upregulated in a subset of MCL tumors, contributed to the high level of FASN in MCL cells, Interesting, siRNA knock-down of FASN in turn down-regulated β-catenin. In conclusion, our data supports the concept that FASN contributes to the pathogenesis of MCL, by collaborating with β-catenin. In view of its high and consistent expression in MCL, FASN inhibitors may hold promises for treating MCL
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …