77 research outputs found

    Extended Analysis of Gravitomagnetic Fields in Rotating Superconductors and Superfluids

    Full text link
    Applying the Ginzburg-Landau theory including frame dragging effects to the case of a rotating superconductor, we were able to express the absolute value of the gravitomagnetic field involved to explain the Cooper pair mass anomaly previously reported by Tate. Although our analysis predicts large gravitomagnetic fields originated by superconductive gyroscopes, those should not affect the measurement of the Earth gravitomagnetic field by the Gravity Probe-B satellite. However, the hypothesis might be well suited to explain a mechanical momentum exchange phenomena reported for superfluid helium. As a possible explanation for those abnormally large gravitomagnetic fields in quantum materials, the reduced speed of light (and gravity) that was found in the case of Bose-Einstein condensates is analysed

    Gravitomagnetic Field of a Rotating Superconductor and of a Rotating Superfluid

    Full text link
    The quantization of the extended canonical momentum in quantum materials including the effects of gravitational drag is applied successively to the case of a multiply connected rotating superconductor and superfluid. Experiments carried out on rotating superconductors, based on the quantization of the magnetic flux in rotating superconductors, lead to a disagreement with the theoretical predictions derived from the quantization of a canonical momentum without any gravitomagnetic term. To what extent can these discrepancies be attributed to the additional gravitomagnetic term of the extended canonical momentum? This is an open and important question. For the case of multiply connected rotating neutral superfluids, gravitational drag effects derived from rotating superconductor data appear to be hidden in the noise of present experiments according to a first rough analysis

    Moderate deviations for random field Curie-Weiss models

    Full text link
    The random field Curie-Weiss model is derived from the classical Curie-Weiss model by replacing the deterministic global magnetic field by random local magnetic fields. This opens up a new and interestingly rich phase structure. In this setting, we derive moderate deviations principles for the random total magnetization SnS_n, which is the partial sum of (dependent) spins. A typical result is that under appropriate assumptions on the distribution of the local external fields there exist a real number mm, a positive real number λ\lambda, and a positive integer kk such that (Snnm)/nα(S_n-nm)/n^{\alpha} satisfies a moderate deviations principle with speed n12k(1α)n^{1-2k(1-\alpha)} and rate function λx2k/(2k)!\lambda x^{2k}/(2k)!, where 11/(2(2k1))<α<11-1/(2(2k-1)) < \alpha < 1.Comment: 21 page

    Induction and Amplification of Non-Newtonian Gravitational Fields

    Get PDF
    One obtains a Maxwell-like structure of gravitation by applying the weak-field approximation to the well accepted theory of general relativity or by extending Newton's laws to time-dependent systems. This splits gravity in two parts, namely a gravitoelectric and gravitomagnetic (or cogravitational) one. Due to the obtained similar structure between gravitation and electromagnetism, one can express one field by the other one using a coupling constant depending on the mass to charge ratio of the field source. Calculations of induced gravitational fields using state-of-the-art fusion plasmas reach only accelerator threshold values for laboratory testing. Possible amplification mechanisms are mentioned in the literature and need to be explored. The possibility of using the principle of equivalence in the weak field approximation to induce non-Newtonian gravitational fields and the influence of electric charge on the free fall of bodies are also investigated, leading to some additional experimental recommendations

    Motional effects of single trapped atomic/ionic qubit

    Get PDF
    We investigate theoretical decoherence effects of the motional degrees of freedom of a single trapped atomic/ionic electronically coded qubit. For single bit rotations from a resonant running wave laser field excitation, we found the achievable fidelity to be determined by a single parameter characterized by the motional states. Our quantitative results provide a useful realistic view for current experimental efforts in quantum information and computing.Comment: 3 fig

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters
    corecore