5 research outputs found

    Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales

    No full text
    We study global climate networks constructed by means of ordinal time series analysis. Climate interdependencies among the nodes are quantified by the mutual information, computed from time series of monthly-averaged surface air temperature anomalies, and from their symbolic ordinal representation (OP). This analysis allows identifying topological changes in the network when varying the time-interval of the ordinal pattern. We consider intra-season time-intervals (e.g., the patterns are formed by anomalies in consecutive months) and inter-annual time-intervals (e.g., the patterns are formed by anomalies in consecutive years). We discuss how the network density and topology change with these time scales, and provide evidence of correlations between geographically distant regions that occur at specific time scales. In particular, we find that an increase in the ordinal pattern spacing (i.e., an increase in the timescale of the ordinal analysis), results in climate networks with increased connectivity on the equatorial Pacific area. On the contrary, the number of significant links decreases when the ordinal analysis is done with a shorter timescale (by comparing consecutive months), and interpret this effect as due to more stochasticity in the time-series in the short timescale. As the equatorial Pacific is known to be dominated by El Niño-Southern Oscillation (ENSO) on scales longer than several months, our methodology allows constructing climate networks where the effect of ENSO goes from mild (monthly OP) to intense (yearly OP), independently of the length of the ordinal pattern and of the thresholding method employed. © 2013 EDP Sciences and Springer

    Methods and Techniques of Complex Systems Science: An Overview

    No full text

    Nonlinear dynamical analysis of EEG and MEG: review of an emerging field

    No full text
    Many complex and interesting phenomena in nature are due to nonlinear phenomena. The theory of nonlinear dynamical systems, also called ‘chaos theory’, has now progressed to a stage, where it becomes possible to study self-organization and pattern formation in the complex neuronal networks of the brain. One approach to nonlinear time series analysis consists of reconstructing, from time series of EEG or MEG, an attractor of the underlying dynamical system, and characterizing it in terms of its dimension (an estimate of the degrees of freedom of the system), or its Lyapunov exponents and entropy (reflecting unpredictability of the dynamics due to the sensitive dependence on initial conditions). More recently developed nonlinear measures characterize other features of local brain dynamics (forecasting, time asymmetry, determinism) or the nonlinear synchronization between recordings from different brain regions. Nonlinear time series has been applied to EEG and MEG of healthy subjects during no-task resting states, perceptual processing, performance of cognitive tasks and different sleep stages. Many pathologic states have been examined as well, ranging from toxic states, seizures, and psychiatric disorders to Alzheimer’s, Parkinson’s and Cre1utzfeldt-Jakob’s disease. Interpretation of these results in terms of ‘functional sources ’ and ‘functional networks ’ allows the identification of three basic patterns of brain dynamics: (i) normal, ongoing dynamics during a no-task, resting state in healthy subjects; this state is characterized by a high dimensional complexity and a relatively low and fluctuating level of synchronization of the neuronal networks; (ii) hypersynchronous, highly nonlinear dynamics of epileptic seizures; (iii) dynamics of degenerative encephalopathies with an abnormally low level of between area synchronization. Only intermediate levels of rapidly fluctuating synchronization, possibly due to critical dynamics near a phase transition, are associated with normal informatio
    corecore