162 research outputs found

    Relativity Theory and Time Perception: Single or Multiple Clocks?

    Get PDF
    BACKGROUND:Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. METHODOLOGY/PRINCIPAL FINDINGS:Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. CONCLUSIONS/SIGNIFICANCE:These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context

    Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal information in the absence of the CS

    Get PDF
    Involvement of the dorsal hippocampus (DHPC) in conditioned-response timing and maintaining temporal information across time gaps was examined in an appetitive Pavlovian conditioning task, in which rats with sham and DHPC lesions were first conditioned to a 15-s visual cue. After acquisition, the subjects received a series of non-reinforced test trials, on which the visual cue was extended (45 s) and gaps of different duration, 0.5, 2.5, and 7.5 s, interrupted the early portion of the cue. Dorsal hippocampal-lesioned subjects underestimated the target duration of 15 s and showed broader response distributions than the control subjects on the no-gap trials in the first few blocks of test, but the accuracy and precision of their timing reached the level of that of the control subjects by the last block. On the gap trials, the DHPC-lesioned subjects showed greater rightward shifts in response distributions than the control subjects. We discussed these lesion effects in terms of temporal versus non-temporal processing (response inhibition, generalisation decrement, and inhibitory conditioning)

    L1 Interaction with Ankyrin Regulates Mediolateral Topography in the Retinocollicular Projection

    Get PDF
    Dynamic modulation of adhesion provided by anchorage of axonal receptors with the cytoskeleton contributes to attractant or repellent responses that guide axons to topographic targets in the brain. The neural cell adhesion molecule L1 engages the spectrin-actin cytoskeleton through reversible linkage of its cytoplasmic domain to ankyrin. To investigate a role for L1 association with the cytoskeleton in topographic guidance of retinal axons to the superior colliculus, a novel mouse strain was generated by genetic knock-in that expresses an L1 point mutation (Tyr1229His) abolishing ankyrin binding. Axon tracing revealed a striking mistargeting of mutant ganglion cell axons from the ventral retina, which express high levels of ephrinB receptors, to abnormally lateral sites in the contralateral superior colliculus, where they formed multiple ectopic arborizations. These axons were compromised in extending interstitial branches in the medial direction, a normal response to the high medial to low lateral SC gradient of ephrinB1. Furthermore, ventral but not dorsal L1(Y1229H) retinal cells were impaired for ephrinB1-stimulated adhesion through beta1 integrins in culture. The retinocollicular phenotype of the L1(Tyr1229His) mutant provides the first evidence that L1 regulates topographic mapping of retinal axons through adhesion mediated by linkage to the actin cytoskeleton and functional interaction with the ephrinB/EphB targeting system

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    Bestial boredom: a biological perspective on animal boredom and suggestions for its scientific investigation

    Get PDF
    Boredom is likely to have adaptive value in motivating exploration and learning, and many animals may possess the basic neurological mechanisms to support it. Chronic inescapable boredom can be extremely aversive, and understimulation can harm neural, cognitive and behavioural flexibility. Wild and domesticated animals are at particular risk in captivity, which is often spatially and temporally monotonous. Yet biological research into boredom has barely begun, despite having important implications for animal welfare, the evolution of motivation and cognition, and for human dysfunction at individual and societal levels. Here I aim to facilitate hypotheses about how monotony affects behaviour and physiology, so that boredom can be objectively studied by ethologists and other scientists. I cover valence (pleasantness) and arousal (wakefulness) qualities of boredom, because both can be measured, and I suggest boredom includes suboptimal arousal and aversion to monotony. Because the suboptimal arousal during boredom is aversive, individuals will resist low arousal. Thus, behavioural indicators of boredom will, seemingly paradoxically, include signs of increasing drowsiness, alongside bouts of restlessness, avoidance and sensation-seeking behaviour. Valence and arousal are not, however, sufficient to fully describe boredom. For example, human boredom is further characterized by a perception that time ‘drags’, and this effect of monotony on time perception can too be behaviourally assayed in animals. Sleep disruption and some abnormal behaviour may also be caused by boredom. Ethological research into this emotional phenomenon will deepen understanding of its causes, development, function and evolution, and will enable evidence-based interventions to mitigate human and animal boredom

    EphB regulates L1 phosphorylation during retinocollicular mapping

    Get PDF
    Interaction of the cell adhesion molecule L1 with the cytoskeletal adaptor ankyrin is essential for topographic mapping of retinal ganglion cell (RGC) axons to synaptic targets in the superior colliculus (SC). Mice mutated in the L1 ankyrin-binding motif (FIGQY1229H) display abnormal mapping of RGC axons along the mediolateral axis of the SC, resembling mouse mutant phenotypes in EphB receptor tyrosine kinases. To investigate whether L1 functionally interacts with EphBs, we investigated the role of EphB kinases in phosphorylating L1 using a phospho-specific antibody to the tyrosine phosphorylated FIGQY1229 motif. EphB2, but not an EphB2 kinase dead mutant, induced tyrosine phosphorylation of L1 at FIGQY1229 and perturbed ankyrin recruitment to the membrane in L1-transfected HEK293 cells. Src family kinases mediated L1 phosphorylation at FIGQY1229 by EphB2. Other EphB receptors that regulate medial-lateral retinocollicular mapping, EphB1 and EphB3, also mediated phosphorylation of L1 at FIGQY1229. Tyrosine1176 in the cytoplasmic domain of L1, which regulates AP2/clathrin-mediated endocytosis and axonal trafficking, was not phosphorylated by EphB2. Accordingly mutation of Tyr1176 to Ala in L1-Y1176A knock-in mice resulted in normal retinocollicular mapping of ventral RGC axons. Immunostaining of the mouse SC during retinotopic mapping showed that L1 colocalized with phospho-FIGQY in RGC axons in retinorecipient layers. Immunoblotting of SC lysates confirmed that L1 was phosphorylated at FIGQY1229 in wild type but not L1-FIGQY1229H (L1Y1229H) mutant SC, and that L1 phosphorylation was decreased in the EphB2/B3 mutant SC. Inhibition of ankyrin binding in L1Y1229H mutant RGCs resulted in increased neurite outgrowth compared to WT RGCs in retinal explant cultures, suggesting that L1-ankyrin binding serves to constrain RGC axon growth. These findings are consistent with a model in which EphB kinases phosphorylate L1 at FIGQY1229 in retinal axons to modulate L1-ankyrin binding important for mediolateral retinocollicular topography

    Embodiment and the origin of interval timing: kinematic and electromyographic data

    Get PDF
    Recent evidence suggests that interval timing (the judgment of durations lasting from approximately 500 ms. to a few minutes) is closely coupled to the action control system. We used surface electromyography (EMG) and motion capture technology to explore the emergence of this coupling in 4-, 6-, and 8-month-olds. We engaged infants in an active and socially relevant arm-raising task with 7 cycles and response period. In one condition cycles were slow (every 4 seconds) in another they were fast (every 2 seconds). In the slow condition, we found evidence of time locked sub-threshold EMG activity even in the absence of any observed overt motor responses at all 3 ages. This study shows that EMGs can be a more sensitive measure of interval timing in early development than overt behavior

    How voluntary actions modulate time perception

    Get PDF
    Distortions of time perception are generally explained either by variations in the rate of pacing signals of an “internal clock”, or by lag-adaptation mechanisms that recalibrate the perceived time of one event relative to another. This study compares these accounts directly for one temporal illusion: the subjective compression of the interval between voluntary actions and their effects, known as ‘intentional binding’. Participants discriminated whether two cutaneous stimuli presented after voluntary or passive movements were simultaneous or successive. In other trials, they judged the temporal interval between their movement and an ensuing tone. Temporal discrimination was impaired following voluntary movements compared to passive movements early in the action-tone interval. In a control experiment, active movements without subsequent tones produced no impairment in temporal discrimination. These results suggest that voluntary actions transiently slow down an internal clock during the action-effect interval. This in turn leads to intentional binding, and links the effects of voluntary actions to the self

    A Neural Correlate of the Processing of Multi-Second Time Intervals in Primate Prefrontal Cortex

    Get PDF
    Several areas of the brain are known to participate in temporal processing. Neurons in the prefrontal cortex (PFC) are thought to contribute to perception of time intervals. However, it remains unclear whether the PFC itself can generate time intervals independently of external stimuli. Here we describe a group of PFC neurons in area 9 that became active when monkeys recognized a particular elapsed time within the range of 1–7 seconds. Another group of area 9 neurons became active only when subjects reproduced a specific interval without external cues. Both types of neurons were individually tuned to recognize or reproduce particular intervals. Moreover, the injection of muscimol, a GABA agonist, into this area bilaterally resulted in an increase in the error rate during time interval reproduction. These results suggest that area 9 may process multi-second intervals not only in perceptual recognition, but also in internal generation of time intervals
    corecore