58 research outputs found

    NMR studies of intracellular sodium in the perfused frog heart

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology Program in Medical Engineering and Medical Physics, 1986.MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE.Bibliography: leaves 140-153.by Deborah Burstein.Ph.D

    Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis

    Get PDF
    Imaging of cartilage has traditionally been achieved indirectly with conventional radiography. Loss of joint space width, or 'joint space narrowing', is considered a surrogate marker for cartilage thinning. However, radiography is severely limited by its inability to visualize cartilage, the difficulty of ascertaining the optimum and reproducible positioning of the joint in serial assessments, and the difficulty of grading joint space narrowing visually. With the availability of advanced magnetic resonance imaging (MRI) scanners, new pulse sequences, and imaging techniques, direct visualization of cartilage has become possible. MRI enables visualization not only of cartilage but also of other important features of osteoarthritis simultaneously. 'Pre-radiographic' cartilage changes depicted by MRI can be measured reliably by a semiquantitative or quantitative approach. MRI enables accurate measurement of longitudinal changes in quantitative cartilage morphology in knee osteoarthritis. Moreover, compositional MRI allows imaging of 'pre-morphologic' changes (that is, visualization of subtle intrasubstance matrix changes before any obvious morphologic alterations occur). Detection of joint space narrowing on radiography seems outdated now that it is possible to directly visualize morphologic and pre-morphologic changes of cartilage by using conventional as well as complex MRI techniques

    A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee

    Get PDF
    INTRODUCTION: AMG 108 is a fully human, immunoglobulin subclass G2 (IgG2) monoclonal antibody that binds the human interleukin-1 (IL-1) receptor type 1, inhibiting the activity of IL-1a and IL-1b. In preclinical studies, IL-1 inhibition was shown to be beneficial in models of osteoarthritis (OA). The purpose of this two-part study was to evaluate the safety and pharmacokinetics (PK; Part A) and clinical effect (Part B) of AMG 108 in a double-blind, placebo-controlled, multiple-dose study in patients with OA of the knee. METHODS: In Part A, patients received placebo or AMG 108 subcutaneously (SC; 75 mg or 300 mg) or intravenously (IV; 100 mg or 300 mg) once every 4 weeks for 12 weeks; in Part B, patients received placebo or 300 mg AMG 108 SC, once every 4 weeks for 12 weeks. The clinical effect of AMG 108 was measured in Part B by using the Western Ontario and McMaster Universities (WOMAC) osteoarthritis index pain score. RESULTS: In Part A, 68 patients were randomized, and 64 received investigational product. In Part B, 160 patients were randomized, and 159 received investigational product. AMG 108 was well tolerated. Most adverse events (AEs), infectious AEs, serious AEs and infections, as well as withdrawals from the study due to AEs occurred at similar rates in both active and placebo groups. One death was reported in an 80-year-old patient (Part A, 300 mg IV AMG 108; due to complications of lobar pneumonia). AMG 108 serum concentration-time profiles exhibited nonlinear PK. The AMG 108 group in Part B had statistically insignificant but numerically greater improvement in pain compared with the placebo group, as shown by the WOMAC pain scores (median change, -63.0 versus -37.0, respectively). CONCLUSIONS: The safety profile of AMG 108 SC and IV was comparable with placebo in patients with OA of the knee. Patients who received AMG 108 showed statistically insignificant but numerically greater improvements in pain; however, minimal, if any, clinical benefit was observed. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov with the identifier NCT00110942.Stanley B Cohen, Susanna Proudman, Alan J Kivitz, Francis X Burch, John P Donohue, Deborah Burstein, Yu-Nien Sun, Christopher Banfield, Michael S Vincent, Liyun Ni, and Debra J Zac

    Association of changes in delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) with changes in cartilage thickness in the medial tibiofemoral compartment of the knee: a 2 year follow-up study using 3.0 T MRI

    Get PDF
    Objective: To determine the association between changes in the delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) index over 2 years as a measure of cartilage proteoglycan concentration, with changes in cartilage thickness in the medial tibiofemoral compartment of knees in middle-aged women. Methods: One hundred and forty-eight women (one knee for each subject) aged ≥40 years were included. 3.0 T MR images of the knee were acquired at baseline, 1 year and 2 years. Three-dimensional (3D) spoiled gradient recalled echo (SPGR) sequences (for cartilage thickness) and 3D inversion recovery-prepared SPGR sequences after dGEMRIC were acquired. Segmentation was performed in the medial central (weight-bearing) femur and tibia to determine cartilage proteoglycan concentration and thickness. The association of change in the dGEMRIC indices between baseline and 1-year follow-up with (a) concomitant changes in cartilage thickness and (b) change in cartilage thickness between 1 and 2 years was assessed using linear regression. Results: In the whole-sample model, a decrease in dGEMRIC indices over time at the central medial femur significantly predicted an increase in cartilage thickness at both the central medial femur (p=0.008) and the medial tibia (p=0.04). Conclusions: A decrease in dGEMRIC indices was associated with an increase in cartilage thickness in the medial compartment. Our results suggest that an increase in cartilage thickness may also be related to a decrease in proteoglycan concentration, which may represent swelling of cartilage in early stages of degeneration

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer.

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance
    corecore