135 research outputs found

    Immunogold electron microscopic evidence of in situ formation of homo- and heteromeric purinergic adenosine A1 and P2Y2 receptors in rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Purines such as adenosine and ATP are now generally recognized as the regulators of many physiological functions, such as neurotransmission, pain, cardiac function, and immune responses. Purines exert their functions via purinergic receptors, which are divided into adenosine and P2 receptors. Recently, we demonstrated that the G<sub>i/o</sub>-coupled adenosine A<sub>1 </sub>receptor (A<sub>1</sub>R) and G<sub>q/11</sub>-coupled P2Y<sub>2 </sub>receptor (P2Y<sub>2</sub>R) form a heteromeric complex with unique pharmacology in co-transfected human embryonic kidney cells (HEK293T). However, the heteromeric interaction of A<sub>1</sub>R and P2Y<sub>2</sub>R <it>in situ </it>in brain is still largely unknown.</p> <p>Findings</p> <p>In the present study, we visualized the surface expression and co-localization of A<sub>1</sub>R and P2Y<sub>2</sub>R in both transfected HEK293T cells and in rat brain by confocal microscopy and more precisely by immunogold electron microscopy. Immunogold electron microscopy showed the evidence for the existence of homo- and hetero-dimers among A<sub>1</sub>R and P2Y<sub>2</sub>R at the neurons in cortex, cerebellum, and particularly cerebellar Purkinje cells, also supported by co-immunoprecipitation study.</p> <p>Conclusion</p> <p>The results suggest that evidence for the existence of homo- and hetero-dimers of A<sub>1</sub>R and P2Y<sub>2</sub>R, not only in co-transfected cultured cells, but also <it>in situ </it>on the surface of neurons in various brain regions. While the homo-dimerization ratios displayed similar patterns in all three regions, the rates of hetero-dimerization were prominent in hippocampal pyramidal cells among the three regions.</p

    Cell surface delivery and structural re-organization by pharmacological chaperones of an oligomerization-defective α1b-adrenoceptor mutant demonstrates membrane targeting of GPCR oligomers

    Get PDF
    Many G-protein-coupled receptors, including the α1b-adrenoceptor, form homo-dimers or oligomers. Mutation of hydrophobic residues in transmembrane domains I and IV alters the organization of the α1b-adrenoceptor oligomer, with transmembrane domain IV playing a critical role. These mutations also result in endoplasmic reticulum trapping of the receptor. Following stable expression of this α1b-adrenoceptor mutant, cell surface delivery, receptor function and structural organization were recovered by treatment with a range of α1b-adrenoceptor antagonists that acted at the level of the endoplasmic reticulum. This was accompanied by maturation of the mutant receptor to a terminally N-glycosylated form, and only this mature form was trafficked to the cell surface. Co-expression of the mutant receptor with an otherwise wild-type form of the α1b-adrenoceptor that is unable to bind ligands resulted in this wild-type variant also being retained in the endoplasmic reticulum. Ligand-induced cell surface delivery of the mutant α1b-adrenoceptor now allowed co-recovery to the plasma membrane of the ligand-binding-deficient mutant. These results demonstrate that interactions between α1b-adrenoceptor monomers occur at an early stage in protein synthesis, that ligands of the α1b-adrenoceptor can act as pharmacological chaperones to allow a structurally compromised form of the receptor to pass cellular quality control, that the mutated receptor is not inherently deficient in function and that an oligomeric assembly of ligand-binding-competent and -incompetent forms of the α1b-adrenoceptor can be trafficked to the cell surface by binding of a ligand to only one component of the receptor oligomer

    Regulation of GIP and GLP1 Receptor Cell Surface Expression by N-Glycosylation and Receptor Heteromerization

    Get PDF
    In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer

    Specific oligomerization of the 5-HT1A receptor in the plasma membrane

    Get PDF
    In the present study we analyze the oligomerization of the 5-HT1A receptor within living cells at the sub-cellular level. Using a 2-excitation Förster Resonance Energy Transfer (FRET) method combined with spectral microscopy we are able to estimate the efficiency of energy transfer based on donor quenching as well as acceptor sensitization between CFP-and YFP-tagged 5-HT1A receptors at the plasma membrane. Through the analysis of the level of apparent FRET efficiency over the various relative amounts of donor and acceptor, as well as over a range of total surface expressions of the receptor, we verify the specific interaction of these receptors. Furthermore we study the role of acylation in this interaction through measurements of a palmitoylation-deficient 5-HT1A receptor mutant. Palmitoylation increases the tendency of a receptor to localize in lipid rich microdomains of the plasma membrane. This increases the effective surface density of the receptor and provides for a higher level of stochastic interaction

    Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking

    Get PDF
    Serotonin receptors 5-HT1A and 5-HT7 are highly coexpressed in brain regions implicated in depression. However, their functional interaction has not been established. In the present study we show that 5-HT1A and 5-HT7 receptors form heterodimers both in vitro and in vivo. Foerster resonance energy transfer-based assays revealed that, in addition to heterodimers, homodimers composed either of 5-HT1A or 5-HT7 receptors together with monomers coexist in cells. The highest affinity for complex formation was obtained for the 5-HT7–5-HT7 homodimers, followed by the 5-HT7–5-HT1A heterodimers and 5-HT1A–5-HT1A homodimers. Functionally, heterodimerization decreases 5-HT1A-receptor-mediated activation of Gi protein without affecting 5-HT7-receptor-mediated signalling. Moreover, heterodimerization markedly decreases the ability of the 5-HT1A receptor to activate G-protein-gated inwardly rectifying potassium channels in a heterologous system. The inhibitory effect on such channels was also preserved in hippocampal neurons, demonstrating a physiological relevance of heteromerization in vivo. In addition, heterodimerization is crucially involved in initiation of the serotonin-mediated 5-HT1A receptor internalization and also enhances the ability of the 5-HT1A receptor to activate the mitogen-activated protein kinases. Finally, we found that production of 5-HT7 receptors in the hippocampus continuously decreases during postnatal development, indicating that the relative concentration of 5-HT1A–5-HT7 heterodimers and, consequently, their functional importance undergoes pronounced developmental changes

    Título: Opusculorum systema duobus tomis digestum

    No full text
    Impresor tomado del colofón del T. IIMarca tip. en portColofónSign.: [cruz]\p2\s, 2[cruz]\p4\s, A-G\p6\s, H-I\p4\s, K-X\p6\s, Y-Z\p4\s, 2A-2O\p6\s, 2\P4\s, 2Q-1Z\p6\s, 3A-3H\p6\s, 3I-3K\p4\s, 3L-3M\p6\s; *\p4\s, A-Z\p6\s, 2A-2R\p6\s, 2S\p4\sPort. a dos tintas en T. primu
    corecore