19 research outputs found

    The Times They Are A-Changin’: Heterochrony in Plant Development and Evolution

    Get PDF
    Alterations in the timing of developmental programs during evolution, that lead to changes in the shape, or size of organs, are known as heterochrony. Heterochrony has been widely studied in animals, but has often been neglected in plants. During plant evolution, heterochronic shifts have played a key role in the origin and diversification of leaves, roots, flowers, and fruits. Heterochrony that results in a juvenile or simpler outcome is known as paedomorphosis, while an adult or more complex outcome is called peramorphosis. Mechanisms that alter developmental timing at the cellular level affect cell proliferation or differentiation, while those acting at the tissue or organismal level change endogenous aging pathways, morphogen signaling, and metabolism. We believe that wider consideration of heterochrony in the context of evolution will contribute to a better understanding of plant development

    EL TELETRABAJO EN TIEMPOS DE COVID: LOS RIESGOS PSICOSOCIALES

    Get PDF
    Este documento analiza la modalidad laboral del teletrabajo como fenómeno en auge tras la pandemia de la COVID-19 que tuvo inicio en 2020, así como los riesgos que pueden derivar del mismo para los teletrabajadores. Como marco teórico, se expone su trayectoria histórica y legislativa en España, prestando mayor atención a la legislación más reciente e impulsada por la crisis sanitaria. Posteriormente se analizan los aspectos positivos y negativos que presenta esta modalidad y los riesgos psicosociales que provoca en los trabajadores, así como las diferentes opiniones encontradas en cuanto pros y contras en la salud psicosocial de los teletrabajadores, complementando todo ello con un cuestionario que ayude a entender y poner en contexto los aspectos previamente investigados en el marco teórico.<br /

    El teletrabajo en tiempos de covid: los riesgos psicosociales.

    Get PDF
    Este documento analiza la modalidad laboral del teletrabajo como fenómeno en auge tras la pandemia de la COVID-19 que tuvo inicio en 2020, así como los riesgos que pueden derivar del mismo para los teletrabajadores. Como marco teórico, se expone su trayectoria histórica y legislativa en España, prestando mayor atención a la legislación más reciente e impulsada por la crisis sanitaria. Posteriormente se analizan los aspectos positivos y negativos que presenta esta modalidad y los riesgos psicosociales que provoca en los trabajadores, así como las diferentes opiniones encontradas en cuanto pros y contras en la salud psicosocial de los teletrabajadores, complementando todo ello con un cuestionario que ayude a entender y poner en contexto los aspectos previamente investigados en el marco teórico.<br /

    El Teletrabajo en tiempos de Covid: los riesgos psicosociales

    Get PDF
    Este documento analiza la modalidad laboral del teletrabajo como fenómeno en auge tras la pandemia de la COVID-19 que tuvo inicio en 2020, así como los riesgos que pueden derivar del mismo para los teletrabajadores. Como marco teórico, se expone su trayectoria histórica y legislativa en España, prestando mayor atención a la legislación más reciente e impulsada por la crisis sanitaria. Posteriormente se analizan los aspectos positivos y negativos que presenta esta modalidad y los riesgos psicosociales que provoca en los trabajadores, así como las diferentes opiniones encontradas en cuanto pros y contras en la salud psicosocial de losteletrabajadores, complementando todo ello con un cuestionario que ayude a entender y poner en contexto los aspectos previamente investigados en el marco teórico.<br /

    Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny

    Full text link
    [EN] Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species. Significance Statement Pollination is a key development process in the life cycle of flowering plants. Genetic and molecular characterization of a tomato mutant have led to the identification of POD1 gene encoding the Mediator complex subunit MED18 whose function is required for tapetum tissue degeneration, a crucial step for pollen development. Furthermore, we show that MED18 fulfils an essential role in tomato, ensuring proper gene regulation during pollen ontogeny.This research was supported by the Spanish Ministry of Economy and Competitiveness (grants AGL2015-64991-C3-1-R, AGL2015-64991-C3-2-R, AGL2015-64991-C3-3-R, BIO2013-43098-R, BFU2016-77243-P and BIO2016-77559-R) and Junta de Andalucia (grant P12-AGR-1482).Pérez Martín, F.; Juan Yuste-Lisbona, F.; Pineda, B.; García Sogo, B.; Del Olmo, I.; Alché, JDD.; Egea, I.... (2018). Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. The Plant Journal. 96(2):300-315. https://doi.org/10.1111/tpj.14031S300315962Allen, B. L., & Taatjes, D. J. (2015). The Mediator complex: a central integrator of transcription. Nature Reviews Molecular Cell Biology, 16(3), 155-166. doi:10.1038/nrm3951Atarés, A., Moyano, E., Morales, B., Schleicher, P., García-Abellán, J. O., Antón, T., … Pineda, B. (2011). An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Reports, 30(10), 1865-1879. doi:10.1007/s00299-011-1094-yBaulcombe, D. C. (1996). Mechanisms of Pathogen-Derived Resistance to Viruses in Transgenic Plants. The Plant Cell, 1833-1844. doi:10.1105/tpc.8.10.1833Bourbon, H.-M. (2008). Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Research, 36(12), 3993-4008. doi:10.1093/nar/gkn349Buendía-Monreal, M., & Gillmor, C. S. (2016). Mediator: A key regulator of plant development. Developmental Biology, 419(1), 7-18. doi:10.1016/j.ydbio.2016.06.009Canales, C., Bhatt, A. M., Scott, R., & Dickinson, H. (2002). EXS, a Putative LRR Receptor Kinase, Regulates Male Germline Cell Number and Tapetal Identity and Promotes Seed Development in Arabidopsis. Current Biology, 12(20), 1718-1727. doi:10.1016/s0960-9822(02)01151-xCarbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A., & Perez-Amador, M. A. (2010). A Fertilization-Independent Developmental Program Triggers Partial Fruit Development and Senescence Processes in Pistils of Arabidopsis. Plant Physiology, 154(1), 163-172. doi:10.1104/pp.110.160044Chadick, J. Z., & Asturias, F. J. (2005). Structure of eukaryotic Mediator complexes. Trends in Biochemical Sciences, 30(5), 264-271. doi:10.1016/j.tibs.2005.03.001Chuang, C.-F., & Meyerowitz, E. M. (2000). Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 97(9), 4985-4990. doi:10.1073/pnas.060034297Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xColeman, A. W., & Goff, L. J. (1985). Applications of Fluorochromes to Pollen Biology. I. Mithramycin and 4′,6-Diamidino-2-Phenylindole (Dapi) as Vital Stains and for Quantitation of Nuclear Dna. Stain Technology, 60(3), 145-154. doi:10.3109/10520298509113905Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T., & Conaway, J. W. (2005). The mammalian Mediator complex and its role in transcriptional regulation. Trends in Biochemical Sciences, 30(5), 250-255. doi:10.1016/j.tibs.2005.03.002Cottrell, H. J. (1948). Tetrazolium Salt as a Seed Germination Indicator. Annals of Applied Biology, 35(1), 123-131. doi:10.1111/j.1744-7348.1948.tb07355.xCrane, M. B. (1915). Heredity of types of inflorescence and fruits in tomato. Journal of Genetics, 5(1), 1-11. doi:10.1007/bf02982149Davoine, C., Abreu, I. N., Khajeh, K., Blomberg, J., Kidd, B. N., Kazan, K., … Björklund, S. (2017). Functional metabolomics as a tool to analyze Mediator function and structure in plants. PLOS ONE, 12(6), e0179640. doi:10.1371/journal.pone.0179640Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-yFallath, T., Kidd, B. N., Stiller, J., Davoine, C., Björklund, S., Manners, J. M., … Schenk, P. M. (2017). MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLOS ONE, 12(4), e0176022. doi:10.1371/journal.pone.0176022Feng, B., Lu, D., Ma, X., Peng, Y., Sun, Y., Ning, G., & Ma, H. (2012). Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. The Plant Journal, 72(4), 612-624. doi:10.1111/j.1365-313x.2012.05104.xGillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910Gómez, J. F., Talle, B., & Wilson, Z. A. (2015). Anther and pollen development: A conserved developmental pathway. Journal of Integrative Plant Biology, 57(11), 876-891. doi:10.1111/jipb.12425Gorman, S. W., McCormick, S., & Rick, C. (1997). Male Sterility in Tomato. Critical Reviews in Plant Sciences, 16(1), 31-53. doi:10.1080/07352689709701945Helliwell, C. (2003). Constructs and methods for high-throughput gene silencing in plants. Methods, 30(4), 289-295. doi:10.1016/s1046-2023(03)00036-7Honys, D., & Twell, D. (2004). Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biology, 5(11). doi:10.1186/gb-2004-5-11-r85Jeong, H.-J., Kang, J.-H., Zhao, M., Kwon, J.-K., Choi, H.-S., Bae, J. H., … Kang, B.-C. (2014). Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. Journal of Experimental Botany, 65(22), 6693-6709. doi:10.1093/jxb/eru389Jimenez-Lopez, J. C., Zienkiewicz, A., Zienkiewicz, K., Alché, J. D., & Rodríguez-García, M. I. (2015). Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed. Protoplasma, 253(2), 517-530. doi:10.1007/s00709-015-0830-5Kornberg, R. D. (2005). Mediator and the mechanism of transcriptional activation. Trends in Biochemical Sciences, 30(5), 235-239. doi:10.1016/j.tibs.2005.03.011Lai, Z., Schluttenhofer, C. M., Bhide, K., Shreve, J., Thimmapuram, J., Lee, S. Y., … Mengiste, T. (2014). MED18 interaction with distinct transcription factors regulates multiple plant functions. Nature Communications, 5(1). doi:10.1038/ncomms4064Larivière, L., Geiger, S., Hoeppner, S., Röther, S., Sträßer, K., & Cramer, P. (2006). Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20. Nature Structural & Molecular Biology, 13(10), 895-901. doi:10.1038/nsmb1143Lee, S. K., Chen, X., Huang, L., & Stargell, L. A. (2013). The head module of Mediator directs activation of preloaded RNAPII in vivo. Nucleic Acids Research, 41(22), 10124-10134. doi:10.1093/nar/gkt796Li, D.-D., Xue, J.-S., Zhu, J., & Yang, Z.-N. (2017). Gene Regulatory Network for Tapetum Development in Arabidopsis thaliana. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01559Liu, X., Huang, J., Parameswaran, S., Ito, T., Seubert, B., Auer, M., … Zhao, D. (2009). The SPOROCYTELESS/NOZZLE Gene Is Involved in Controlling Stamen Identity in Arabidopsis. Plant Physiology, 151(3), 1401-1411. doi:10.1104/pp.109.145896Lora, J., Hormaza, J. I., Herrero, M., & Gasser, C. S. (2011). Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proceedings of the National Academy of Sciences, 108(13), 5461-5465. doi:10.1073/pnas.1014514108Lozano, R., Angosto, T., Gómez, P., Payán, C., Capel, J., Huijser, P., … Martı́nez-Zapater, J. M. (1998). Tomato Flower Abnormalities Induced by Low Temperatures Are Associated with Changes of Expression of MADS-Box Genes. Plant Physiology, 117(1), 91-100. doi:10.1104/pp.117.1.91Ma, H. (2005). MOLECULAR GENETIC ANALYSES OF MICROSPOROGENESIS AND MICROGAMETOGENESIS IN FLOWERING PLANTS. Annual Review of Plant Biology, 56(1), 393-434. doi:10.1146/annurev.arplant.55.031903.141717McNeil, K. J., & Smith, A. G. (2009). A glycine-rich protein that facilitates exine formation during tomato pollen development. Planta, 231(4), 793-808. doi:10.1007/s00425-009-1089-xMercier, R. (2003). The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development, 130(>14), 3309-3318. doi:10.1242/dev.00550Mukundan, B., & Ansari, A. (2011). Novel Role for Mediator Complex Subunit Srb5/Med18 in Termination of Transcription. Journal of Biological Chemistry, 286(43), 37053-37057. doi:10.1074/jbc.c111.295915Muschietti, J., Dircks, L., Vancanneyt, G., & McCormick, S. (1994). LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. The Plant Journal, 6(3), 321-338. doi:10.1046/j.1365-313x.1994.06030321.xOzga, J. A., & Reinecke, D. M. (2003). Hormonal Interactions in Fruit Development. Journal of Plant Growth Regulation, 22(1), 73-81. doi:10.1007/s00344-003-0024-9Pacini, E. (2010). Relationships between Tapetum, Loculus, and Pollen during Development. International Journal of Plant Sciences, 171(1), 1-11. doi:10.1086/647923Pérez-Martín, F., Yuste-Lisbona, F. J., Pineda, B., Angarita-Díaz, M. P., García-Sogo, B., Antón, T., … Lozano, R. (2017). A collection of enhancer trap insertional mutants for functional genomics in tomato. Plant Biotechnology Journal, 15(11), 1439-1452. doi:10.1111/pbi.12728Pina, C., Pinto, F., Feijó, J. A., & Becker, J. D. (2005). Gene Family Analysis of the Arabidopsis Pollen Transcriptome Reveals Biological Implications for Cell Growth, Division Control, and Gene Expression Regulation. Plant Physiology, 138(2), 744-756. doi:10.1104/pp.104.057935Polowick, P. L., & Sawhney, V. K. (1993). An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). I. Tetrad to early binucleate microspore stage. Canadian Journal of Botany, 71(8), 1039-1047. doi:10.1139/b93-120Polowick, P. L., & Sawhney, V. K. (1993). An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). II. Pollen maturation. Canadian Journal of Botany, 71(8), 1048-1055. doi:10.1139/b93-121Rutley, N., & Twell, D. (2015). A decade of pollen transcriptomics. Plant Reproduction, 28(2), 73-89. doi:10.1007/s00497-015-0261-7Samanta, S., & Thakur, J. K. (2015). Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00757Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., & Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 96(20), 11664-11669. doi:10.1073/pnas.96.20.11664Scott, R. J. (2004). Stamen Structure and Function. THE PLANT CELL ONLINE, 16(suppl_1), S46-S60. doi:10.1105/tpc.017012Smirnova, A., Leide, J., & Riederer, M. (2012). Deficiency in a Very-Long-Chain Fatty Acid β-Ketoacyl-Coenzyme A Synthase of Tomato Impairs Microgametogenesis and Causes Floral Organ Fusion. Plant Physiology, 161(1), 196-209. doi:10.1104/pp.112.206656Sorensen, A.-M., Kröber, S., Unte, U. S., Huijser, P., Dekker, K., & Saedler, H. (2003). TheArabidopsis ABORTED MICROSPORES(AMS) gene encodes a MYC class transcription factor. The Plant Journal, 33(2), 413-423. doi:10.1046/j.1365-313x.2003.01644.xWang, Y., Hu, Z., Zhang, J., Yu, X., Guo, J.-E., Liang, H., … Chen, G. (2018). Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion. Scientific Reports, 8(1). doi:10.1038/s41598-018-21679-1Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.xWilson, Z. A., & Zhang, D.-B. (2009). From Arabidopsis to rice: pathways in pollen development. Journal of Experimental Botany, 60(5), 1479-1492. doi:10.1093/jxb/erp095Wilson, Z. A., Morroll, S. M., Dawson, J., Swarup, R., & Tighe, P. J. (2001). The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. The Plant Journal, 28(1), 27-39. doi:10.1046/j.1365-313x.2001.01125.xWiner, J., Jung, C. K. S., Shackel, I., & Williams, P. M. (1999). Development and Validation of Real-Time Quantitative Reverse Transcriptase–Polymerase Chain Reaction for Monitoring Gene Expression in Cardiac Myocytesin Vitro. Analytical Biochemistry, 270(1), 41-49. doi:10.1006/abio.1999.4085Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108Yang, C.-Y., Spielman, M., Coles, J. P., Li, Y., Ghelani, S., Bourdon, V., … Dickinson, H. G. (2003). TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. The Plant Journal, 34(2), 229-240. doi:10.1046/j.1365-313x.2003.01713.xYang, C., Vizcay-Barrena, G., Conner, K., & Wilson, Z. A. (2007). MALE STERILITY1 Is Required for Tapetal Development and Pollen Wall Biosynthesis. The Plant Cell, 19(11), 3530-3548. doi:10.1105/tpc.107.054981Yuan, W., Li, X., Chang, Y., Wen, R., Chen, G., Zhang, Q., & Wu, C. (2009). Mutation of the rice genePAIR3results in lack of bivalent formation in meiosis. The Plant Journal, 59(2), 303-315. doi:10.1111/j.1365-313x.2009.03870.xYuste-Lisbona, F. J., Quinet, M., Fernández-Lozano, A., Pineda, B., Moreno, V., Angosto, T., & Lozano, R. (2016). Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports, 6(1). doi:10.1038/srep18796Zhao, D.-Z. (2002). The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes & Development, 16(15), 2021-2031. doi:10.1101/gad.997902Zheng, Z., Guan, H., Leal, F., Grey, P. H., & Oppenheimer, D. G. (2013). Mediator Subunit18 Controls Flowering Time and Floral Organ Identity in Arabidopsis. PLoS ONE, 8(1), e53924. doi:10.1371/journal.pone.0053924Zhou, S., Wang, Y., Li, W., Zhao, Z., Ren, Y., Wang, Y., … Wan, J. (2011). Pollen Semi-Sterility1 Encodes a Kinesin-1–Like Protein Important for Male Meiosis, Anther Dehiscence, and Fertility in Rice. The Plant Cell, 23(1), 111-129. doi:10.1105/tpc.109.07369
    corecore