431 research outputs found

    Estudio de interacciones de AgNPs con monocapas de dimiristoilfosfatidilcolina

    Get PDF
    El uso de nanopartículas (NPs) sintéticas se ha incrementado enormemente en los últimos años debido a su creciente uso en aplicaciones biomédicas y en nanomedicina. Por este motivo, resulta sumamente importante el estudio de las interacciones entre NPs con membranas celulares. En muchos casos las NPs necesitan unirse, romper y penetrar la membrana celular para inducir una respuesta, lo cual depende fuertemente de su tamaño, forma, carga superficial y funcionalidad química superficial. Las NPs con dimensiones menores que 2 nm pueden penetrar en las membranas celulares mientras que para las de mayor tamaño se ha propuesto que su acción ocurre principalmente a través de alteraciones de la estructura de la membrana, lo cual puede afectar fuertemente su permeabilidad, el potencial de membrana y sus funciones principales. Dependiendo entonces de la acción propuesta para las NPs en los sistemas biológicos es imprescindible el conocimiento de su interacción con las membranas.Se planteó estudiar la adsorción de AgNPs modificadas con citrato (AgNPs–CT) y con ácido 4-mercaptobenzoico (AgNPs–MBA) en ausencia y presencia de monocapas de dimiristoilfosfatidilcolina (DMPC) e investigar la capacidad de las AgNPs–CT y AgNPs–MBA para formar monocapas de Langmuir por sí mismas y en contacto con DMPC a distintos grados de empaquetamiento.Para estudiar la interacción de AgNPs–CT y con AgNPs–MBA con un modelo de biomembrana, se evaluó la adsorción de las NPs a la interfase agua/aire y a interfases de DMPC a diferentes presiones de superficie (p), a fin de conocer si la organización bidimensional que posee el lípido en la interfase condiciona la interacción con las AgNPs.Se observó interacción con DMPC por parte de todas las AgNPs (Citratadas y con MBA). Cuando la p de DMPC fue 5mN/m, la presencia de NPs produjo un incremento en la presión de 5-7.5mN/m, lo cual indica interacción con el lípido. Cuando la presión de DMPC fue 30mN/m, las NPs no produjeron cambios en p, indicando ausencia de interacción.Por otro lado, se comparó la isoterma de Langmuir de DMPC pura con las isotermas de DMPC en las que se adsorbieron AgNPs–CT y AgNPs–MBA. La interacción de AgNPs–MBA con DMPC produce una expansión del área en toda la isoterma que es prácticamente constante y representa un incremento en el área, respecto a DMPC pura. Por su parte, la presencia de MBA en la subfase no produce cambios en el área que ocupa DMPC. Las AgNPs–CT producen una pequeña modificación en el área que ocupa DMPC (respecto a cuando está pura) hasta aproximadamente 20mN/m, luego las isotermas prácticamente se superponen indicando que las NPs que estaban en la interfase son excluídas.De acuerdo a los resultados obtenidos, tanto AgNPs–CT como AgNPs–MBA, interaccionan con el DMPC a temperatura ambiente. Se observó que la magnitud de interacción AgNPs/DMPC depende de la p a la cual se encuentra el fosfolípido. Siendo una clara evidencia, de que la organización del lípido en la monocapa (o interfase y posiblemente en biomembranas) es un factor clave que regula la interacción

    The grieving process inherent to death from childhood to old age

    Get PDF
    Revista de Psicologia da Criança e do Adolescente. - ISSN 1647-4120. - V. 5, n. 2 (Julho-Dezembro 2014). - p. 31-42.Identificar as crenças da população face à morte e ao respetivo processo de luto e compará-las em 3 grupos etários: adolescentes, adultos e idosos. Amostra: 20 indivíduos de cada uma das faixas etárias, adolescentes, adultos e idosos (n=60), com uma média de idades de 16.5, 39.6 e 69.7 anos, respetivamente, sendo 39 dos sujeitos do género feminino. Resultados: As variáveis mais identificadas foram apoio familiar e/ou social (63,3%), evitar isolamento/ocupar o tempo e reorganizar a vida que favorece positivamente o luto (43,3%), resiliência e aceitação (33,3%), falta de resiliência e aceitação (36,7%), laços com a pessoa que faleceu que favorece negativamente o luto (28,3%) e falar e recordar que favorece negativamente o luto (26,7%). Conclusões: As reações e as formas de lidar com o luto variam de sujeito para sujeito, podendo ser observadas isoladamente ou em combinação e sendo influenciadas por fatores intrapessoais, interpessoais e extrapessoais, com variações ao longo da vida

    Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes.

    Get PDF
    The pellucid zone (PZ) is a protective embryonic cells barrier against chemical, physical or biological substances. This put, usual transfection methods are not efficient for mammal oocytes and embryos as they are exclusively for somatic cells. Carbon nanotubes have emerged as a new method for gene delivery, and they can be an alternative for embryos transfection, however its ability to cross the PZ and mediated gene transfer is unknown. Our data confirm that multiwall carbon nanotubes (MWNTs) can cross the PZ and delivery of pDNA into in vitro-fertilized bovine embryos. The degeneration rate and the expression of genes associated to cell viability were not affected in embryos exposed to MWNTs. Those embryos, however, had lower cell number and higher apoptotic cell index, but this did not impair the embryonic development. This study shows the potential utility of the MWNT for the development of new method for delivery of DNA into bovine embryos

    Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma

    Get PDF
    The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials

    Determinants of enhanced vulnerability to coronavirus disease 2019 in UK patients with cancer: a European study

    Get PDF
    Despite high contagiousness and rapid spread, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to heterogeneous outcomes across affected nations. Within Europe (EU), the United Kingdom (UK) is the most severely affected country, with a death toll in excess of 100,000 as of January 2021. We aimed to compare the national impact of coronavirus disease 2019 (COVID-19) on the risk of death in UK patients with cancer versus those in continental EU. Methods: We performed a retrospective analysis of the OnCovid study database, a European registry of patients with cancer consecutively diagnosed with COVID-19 in 27 centres from 27th February to 10th September 2020. We analysed case fatality rates and risk of death at 30 days and 6 months stratified by region of origin (UK versus EU). We compared patient characteristics at baseline including oncological and COVID-19-specific therapy across UK and EU cohorts and evaluated the association of these factors with the risk of adverse outcomes in multivariable Cox regression models. Findings: Compared with EU (n = 924), UK patients (n = 468) were characterised by higher case fatality rates (40.38% versus 26.5%, p < 0.0001) and higher risk of death at 30 days (hazard ratio [HR], 1.64 [95% confidence interval {CI}, 1.36-1.99]) and 6 months after COVID-19 diagnosis (47.64% versus 33.33%; p < 0.0001; HR, 1.59 [95% CI, 1.33-1.88]). UK patients were more often men, were of older age and have more comorbidities than EU counterparts (p < 0.01). Receipt of anticancer therapy was lower in UK than in EU patients (p < 0.001). Despite equal proportions of complicated COVID-19, rates of intensive care admission and use of mechanical ventilation, UK patients with cancer were less likely to receive anti-COVID-19 therapies including corticosteroids, antivirals and interleukin-6 antagonists (p < 0.0001). Multivariable analyses adjusted for imbalanced prognostic factors confirmed the UK cohort to be characterised by worse risk of death at 30 days and 6 months, independent of the patient's age, gender, tumour stage and status; number of comorbidities; COVID-19 severity and receipt of anticancer and anti-COVID-19 therapy. Rates of permanent cessation of anticancer therapy after COVID-19 were similar in the UK and EU cohorts. Interpretation: UK patients with cancer have been more severely impacted by the unfolding of the COVID-19 pandemic despite societal risk mitigation factors and rapid deferral of anticancer therapy. The increased frailty of UK patients with cancer highlights high-risk groups that should be prioritised for anti-SARS-CoV-2 vaccination. Continued evaluation of long-term outcomes is warranted

    Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis)

    Get PDF
    We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that includes the contribution of genetic variation and phenotypic plasticity can improve the reliability of the ecological inferences derived from the climate-growth relationships.This work was partially supported by Spanish Ministry of Education and Science co-funded by FEDER program (CGL2012-31668), the European Union and the National Ministry of Education and Religion of Greece (EPEAEK- Environment – Archimedes), the Slovenian Research Agency (program P4-0015), and the USDA Forest Service. The cooperation among international partners was supported by the COST Action FP1106, STREeSS

    Evolutionary Heritage Influences Amazon Tree Ecology

    Get PDF
    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change

    Evolutionary Heritage Influences Amazon Tree Ecology

    Get PDF
    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century
    corecore