224 research outputs found

    Suppression of Ground-State Magnetization in Finite-Sized Systems Due to Off-Diagonal Interaction Fluctuations

    Full text link
    We study a generic model of interacting fermions in a finite-sized disordered system. We show that the off-diagonal interaction matrix elements induce density of states fluctuations which generically favor a minimum spin ground state at large interaction amplitude, UU. This effect competes with the exchange effect which favors large magnetization at large UU, and it suppresses this exchange magnetization in a large parameter range. When off-diagonal fluctuations dominate, the model predicts a spin gap which is larger for odd-spin ground states as for even-spin, suggesting a simple experimental signature of this off-diagonal effect in Coulomb blockade transport measurements.Comment: Final, substantially modified version of the article. Accepted for publication in Physical Review Letter

    Ground-State Magnetization for Interacting Fermions in a Disordered Potential : Kinetic Energy, Exchange Interaction and Off-Diagonal Fluctuations

    Full text link
    We study a model of interacting fermions in a disordered potential, which is assumed to generate uniformly fluctuating interaction matrix elements. We show that the ground state magnetization is systematically decreased by off-diagonal fluctuations of the interaction matrix elements. This effect is neglected in the Stoner picture of itinerant ferromagnetism in which the ground-state magnetization is simply determined by the balance between ferromagnetic exchange and kinetic energy, and increasing the interaction strength always favors ferromagnetism. The physical origin of the demagnetizing effect of interaction fluctuations is the larger number of final states available for interaction-induced scattering in the lower spin sectors of the Hilbert space. We analyze the energetic role played by these fluctuations in the limits of small and large interaction UU. In the small UU limit we do second-order perturbation theory and identify explicitly transitions which are allowed for minimal spin and forbidden for higher spin. These transitions then on average lower the energy of the minimal spin ground state with respect to higher spin. For large interactions UU we amplify on our earlier work [Ph. Jacquod and A.D. Stone, Phys. Rev. Lett. 84, 3938 (2000)] which showed that minimal spin is favored due to a larger broadening of the many-body density of states in the low-spin sectors. Numerical results are presented in both limits.Comment: 35 pages, 24 figures - final, shortened version, to appear in Physical Review

    Long-chain polyunsaturated fatty acid synthesis in fish: Comparative analysis of Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) Delta 6 fatty acyl desaturase gene promoters

    Get PDF
    Fish vary in ability to biosynthesise n-3 long-chain polyunsaturated fatty acids (LC-PUFA), with marine fish such as cod being inefficient in comparison to freshwater and salmonid fish. We investigated differences in the gene promoters of Δ6 fatty acyl desaturase (Δ6 FAD), a critical enzyme in LC-PUFA biosynthesis, in cod and salmon. Progressive deletions and targeted mutations of the promoters were tested for activity in a transfected fish cell line under low or high LC-PUFA treatment, and regions sufficient to direct transcription were identified. Comparison of these regions with sequences of corresponding regions of Δ6 FAD genes from mammals, amphibians and fish indicated a remarkable conservation of binding sites for SREBPs and NF-Y. In addition to these sites, a site was identified in salmon with similarity to that recognised by Sp1 transcription factor, and which was required for full expression of the salmon Δ6 FAD gene. The cod promoter was less active and lacked the Sp1 site. Eicosapentaenoic acid suppressed LC-PUFA synthesis in AS cells and also suppressed activity of the salmon Δ6 FAD promoter although this activity was likely mediated through sites other than Sp1, possibly similar to those recognised by NF-Y and SREBP transcription factors

    Understanding Subjectivities in the Regulation of Local Water Services: A Q Methodology Study of Elected Public Officers in Italy

    Get PDF
    In sub-national governments, elected public officers can exercise considerable influence on the regulation of local water services, in such ways as, for example, contributing to the design of local regulatory institutions, to the formulation of tariff rules, and to the supervision of water firms. Relatively little we know, however, about how elected public officers think about the regulation of local water services. This Q methodology study provides some evidence of the variety of opinions held on how local water services are delivered, how well they perform, and how they should be regulated among elected public officers in local governments in Italy. The study shows that the policy discourse on water regulation in Italy is highly fragmented into alternative and partially conflicting views. These findings bear some relevance for better understanding sources of stability and change of water regulatory regimes at the local level

    miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: Effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus

    Get PDF
    Biosynthesis in vertebrates of long-chain polyunsaturated fatty acids (LC-PUFA) such as arachidonic (ARA; 20:4n-6), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids requires the catalysis by fatty acyl desaturases (Fads). A vertebrate Fad with Δ4 activity catalyzing the direct conversion of 22:5n-3 to DHA was discovered in the marine teleost rabbitfish Siganus canaliculatus. Recent studies in vertebrates have shown that miRNAs may participate in the regulation of lipid metabolism at post-transcription level. However, their roles in LC-PUFA biosynthesis were not known. In the present study, in silico analysis predicts that the rabbitfish Δ4 Fad may be a target of miR-17 and thus we cloned miR-17, which is located at the forepart of the miR-17-92 cluster. Dual luciferase reporter assays demonstrated that miR-17 targeted the 3'UTR of Δ4 Fad directly. Furthermore, the expression level of miR-17 displayed an inverse pattern with that of Δ4 Fad mRNA in gill, liver and eyes, and also the Δ4 Fad protein quantity in rabbitfish liver. Incubation of rabbitfish primary hepatocytes with linoleic acid (LA; 18:2n-6), α-linolenic acid (LNA; 18:3n-3), EPA or DHA showed differential effects on miR-17, Δ4 Fad and Δ6/Δ5 Fad expression. LNA promoted the expression of miR-17 and Δ6/Δ5 Fad, but suppressed the expression of Δ4 Fad. In contrast, LA and EPA decreased the expression of miR-17 and Δ6/Δ5 Fad, but had no effect on Δ4 Fad. However, all the above were down-regulated by DHA. These data indicate that miR-17 was involved in the regulation of LC-PUFA biosynthesis in rabbitfish liver by targeting Δ4 Fad

    Anthropogenically-mediated density dependence in a declining farmland bird

    Get PDF
    Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e. at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success

    Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data

    Get PDF
    The degree to which genetic factors influence brain connectivity is beginning to be understood. Large-scale efforts are underway to map the profile of genetic effects in various brain regions. The NIH-funded Human Connectome Project (HCP) is providing data valuable for analyzing the degree of genetic influence underlying brain connectivity revealed by state-of-the-art neuroimaging methods. We calculated the heritability of the fractional anisotropy (FA) measure derived from diffusion tensor imaging (DTI) reconstruction in 481 HCP subjects (194/287 M/F) consisting of 57/60 pairs of mono- and dizygotic twins, and 246 siblings. FA measurements were derived using (Enhancing NeuroImaging Genetics through Meta-Analysis) ENIGMA DTI protocols and heritability estimates were calculated using the SOLAR-Eclipse imaging genetic analysis package. We compared heritability estimates derived from HCP data to those publicly available through the ENIGMA-DTI consortium, which were pooled together from five-family based studies across the US, Europe, and Australia. FA measurements from the HCP cohort for eleven major white matter tracts were highly heritable (h2 = 0.53–0.90, p < 10− 5), and were significantly correlated with the joint-analytical estimates from the ENIGMA cohort on the tract and voxel-wise levels. The similarity in regional heritability suggests that the additive genetic contribution to white matter microstructure is consistent across populations and imaging acquisition parameters. It also suggests that the overarching genetic influence provides an opportunity to define a common genetic search space for future gene-discovery studies. Uniquely, the measurements of additive genetic contribution performed in this study can be repeated using online genetic analysis tools provided by the HCP ConnectomeDB web application

    Cloning, Functional Characterization and Nutritional Regulation of Delta 6 Fatty Acyl Desaturase in the Herbivorous Euryhaline Teleost Scatophagus Argus

    Get PDF
    Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or whether it is common to the herbivorous marine teleosts, LC-PUFA biosynthetic pathways were investigated in the herbivorous euryhaline Scatophagus argus. A putative desaturase gene was cloned and functionally characterized, and tissue expression and nutritional regulation were investigated. The full-length cDNA was 1972 bp, containing a 1338 bp open-reading frame encoding a polypeptide of 445 amino acids, which possessed all the characteristic features of fatty acyl desaturase (Fad). Functional characterization by heterologous expression in yeast showed the protein product of the cDNA efficiently converted 18:3n-3 and 18:2n-6 to 18:4n-3 and 18:3n-6, respectively, indicating D6 desaturation activity. Quantitative real-time PCR showed that highest D6 fad mRNA expression was detected in liver followed by brain, with lower expression in other tissues including intestine, eye, muscle, adipose, heart kidney and gill, and lowest expression in stomach and spleen. The expression of D6 fad was significantly affected by dietary lipid and, especially, fatty acid composition, with highest expression of mRNA in liver of fish fed a diet with a ratio of 18:3n-3/18:2n-6 of 1.72:1. The results indicated that S. argus may have a different LC-PUFA biosynthetic system from S. canaliculatus despite possessing similar habitats and feeding habits suggesting that LC-PUFA biosynthesis may not be common to all marine herbivorous teleosts
    • …
    corecore