38 research outputs found

    The effect of pre-treatment of protein ingredients for infant formula on their in vitro gastro-intestinal behaviour

    Get PDF
    peer-reviewedThree milk products, skim milk powder (SMP), demineralised whey powder (DWP) and a whey dominant infant formula (60/40IF) and their corresponding partially hydrolysed products (SMPhyd, DWPhyd and 60/40hyd, respectively) were subjected to static infant in vitro gastro-intestinal (GI) digestion and their digesta were subsequently analysed for protein breakdown. The pre-hydrolysis of proteins provided a head-start in the gastric digestion process compared with the intact proteins, resulting in a higher proportion of small peptides (<1 kDa), a higher degree of hydrolysis and lower observable protein coagulation or curd formation in the gastric phase of the casein dominant systems in particular, which may lead to an earlier onset of gastric emptying in vivo. Little or no differences were detected during the intestinal phase. Hence pre-hydrolysis of proteins may be used as a strategy to lower gastric transit times, which may ease the gastric digestion of infant formulations.Kerry Grou

    Dairy-derived peptides for satiety

    Get PDF
    peer-reviewedSatiety hormones produced in the gastrointestinal tract are key players in influencing appetite and food intake. Dairy proteins that target these gastric signals have the potential to make one feel ‘fuller for longer’. While effects of whey and casein on appetite and food intake are well documented, this review focuses on individual dairy peptides. The evidence of these peptide bioactives on satiety signaling in vitro using cellular models and in vivo via intervention trials is summarized. Dairy protein hydrolysates are also reviewed for their satiating properties. How their efficacy compares to other notable food derived peptides and how this efficacy can be lost, bolstered or protected during gut transit is also summarized

    Oral Delivery of Nisin in Resistant Starch Based Matrices Alters the Gut Microbiota in Mice

    Get PDF
    peer-reviewedThere is a growing recognition of the role the gastrointestinal microbiota plays in health and disease. Ingested antimicrobial proteins and peptides have the potential to alter the gastrointestinal microbiota; particularly if protected from digestion. Nisin is an antimicrobial peptide that is used as a food preservative. This study examined the ability of nisin to affect the murine microbiota when fed to mice in two different starch based matrices; a starch dough comprising raw starch granules and a starch gel comprising starch that was gelatinized and retrograded. The effects of the two starch matrices by themselves on the microbiota were also examined. Following 16S rRNA compositional sequencing, beta diversity analysis highlighted a significant difference (p = 0.001, n = 10) in the murine microbiota between the four diet groups. The differences between the two nisin containing diets were mainly attributable to differences in the nisin release from the starch matrices while the differences between the carriers were mainly attributable to the type of resistant starch they possessed. Indeed, the differences in the relative abundance of several genera in the mice consuming the starch dough and starch gel diets, in particular Akkermansia, the relative abundance of which was 0.5 and 11.9%, respectively (p = 0.0002, n = 10), points to the potential value of resistance starch as a modulator of beneficial gut microbes. Intact nisin and nisin digestion products (in particular nisin fragment 22–31) were detected in the feces and the nisin was biologically active. However, despite a three-fold greater consumption of nisin in the group fed the nisin in starch dough diet, twice as much nisin was detected in the feces of the group which consumed the nisin in starch gel diet. In addition, the relative abundance of three times as many genera from the lower gastrointestinal tract (GIT) were significantly different (p < 0.001, n = 10) to the control for the group fed the nisin in starch gel diet, implying that the starch gel afforded a degree of protection from digestion to the nisin entrapped within it

    Dairy food structures influence the rates of nutrient digestion through different in vitro gastric behaviour

    Get PDF
    The purpose of this study was to investigate in vitro the extent to which specific food structures alter gastric behaviour and could therefore impact on nutrient delivery and digestion in the small intestine. Results obtained from a specifically developed gastric digestion model, were compared to results from a previous human study on the same foods. The semi-dynamic model could simulate the main gastric dynamics including gradual acidification, lipolysis, proteolysis and emptying. Two dairy-based foods with the same caloric content but different structure were studied. The semi-solid meal comprised a mixture of cheese and yogurt and the liquid meal was an oil in water emulsion stabilised by milk proteins. Our findings showed similar gastric behaviour to that seen previously in vivo. Gastric behaviour was affected by the initial structure with creaming and sedimentation observed in the case of liquid and semi-solid samples, respectively. Lipid and protein digestion profiles showed clear differences in the amount of nutrients reaching the simulated small intestine and, consequently, the likely bioaccessibility after digestion. The semi-solid sample generated higher nutrient released into the small intestine at an early stage of digestion whereas nutrient accessibility from liquid sample was delayed due to the formation of a cream layer in the gastric phase. This shows the strong effect of the matrix on gastric behaviour, proteolysis and lipolysis, which explains the differences in physiological responses seen previously with these systems in terms of fullness and satiety

    Structural mechanism and kinetics of in vitro gastric digestion are affected by process-induced changes in bovine milk

    Get PDF
    Bovine milk is commonly exposed to processing, which can alter the structure, biochemical composition, physico-chemical properties and sensory quality. While many of these changes have been studied extensively, little is known about their effect on digestive behaviour. In this study, heat treatments of pasteurisation at 72 °C for 15 s or Ultra-High-Temperature (UHT) treatment at 140 °C for 3 s and homogenisation at pilot-plant scale were applied to whole milk. The gastric behaviour was investigated using a recently developed semi-dynamic adult in vitro model. The emptied digesta were analysed to assess the nutrient delivery kinetics, changes in microstructure and protein digestion. All samples showed protein aggregation and coagulum formation within the first 15 min of gastric digestion at which time the pH ranged from 5.5 to 6. Homogenised samples creamed regardless of heat treatment, whereas all non-homogenised samples exhibited sedimentation. The consistency of the coagulum of the heated samples was more fragmented compared to those of the non-heated samples. Rheological analysis showed that the higher the temperature of the heat treatment, the softer the obtained coagulum and the higher the protein hydrolysis at the end of digestion. The study also confirmed that gastric emptying of caseins from milk is delayed due to coagulation in the stomach, while β-lactoglobulin was emptied throughout the gastric phase, except for UHT-treated milk. The gastric behaviour also had an impact on the lipid and protein content of the emptied chyme. The homogenised samples seemed to release more nutrients at the end of gastric digestion

    Standardization of in vitro digestibility and DIAAS method based on the static INFOGEST protocol

    Get PDF
    Background: The FAO recommends the digestible indispensable amino acid score (DIAAS) as the measure for protein quality, for which the true ileal digestibility needs to be assessed in humans or pigs. However, due to high costs and ethical concerns, the FAO strongly encourages as well the development of validated in vitro methods, which complement the in vivo experiments. Method: Recently, an in vitro workflow, based on the validated static INFOGEST protocol, was developed and compared towards in vivo data. In parallel to the validation with in vivo data, the repeatability and reproducibility of the in vitro protocol were tested in an international ring trial (RT) with the aim to establish an international ISO standard method within the International Dairy Federation (IDF). Five different dairy products (skim milk powder, whole milk powder, whey protein isolate, yoghurt, and cheese) were analyzed in 32 different laboratories from 18 different countries, across 4 continents. Results: in vitro protein digestibilities based on Nitrogen, free R-NH2, and total amino acids as well as DIAAS values were calculated and compared to in vivo data, where available. Conclusion: The in vitro method is suited for quantification of digestibility and will be further implemented to other food matricesinfo:eu-repo/semantics/publishedVersio

    Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information

    Get PDF
    [EN] Background In vitro digestion models show great promise in facilitating the rationale design of foods. This paper provides a look into the current state of the art and outlines possible future paths for developments of digestion models recreating the diverse physiological conditions of specific groups of the human population. Scope and approach Based on a collective effort of experts, this paper outlines considerations and parameters needed for development of new in vitro digestion models, e.g. gastric pH, enzymatic activities, gastric emptying rate and more. These and other parameters are detrimental to the adequate development of in vitro models that enable deeper insight into matters of food luminal breakdown as well as nutrient and nutraceutical bioaccessibility. Subsequently, we present an overview of some new and emerging in vitro digestion models mirroring the gastro-intestinal conditions of infants, the elderly and patients of cystic fibrosis or gastric bypass surgery. Key findings and conclusions This paper calls for synchronization, harmonization and validation of potential developments in in vitro digestion models that would greatly facilitate manufacturing of foods tailored or even personalized, to a certain extent, to various strata of the human population.Shani-Levi, C.; Alvito, P.; Andrés Grau, AM.; Assunção, R.; Barbera, R.; Blanquet-Diot, S.; Bourlieu, C.... (2017). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science & Technology. 60:52-63. https://doi.org/10.1016/j.tifs.2016.10.017S52636

    A study of optically pure transition metal complexes and their interaction with DNA

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
    corecore