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A B S T R A C T

Satiety hormones produced in the gastrointestinal tract are key players in influencing appetite and food intake.
Dairy proteins that target these gastric signals have the potential to make one feel ‘fuller for longer’. While effects
of whey and casein on appetite and food intake are well documented, this review focuses on individual dairy
peptides. The evidence of these peptide bioactives on satiety signaling in vitro using cellular models and in vivo
via intervention trials is summarized. Dairy protein hydrolysates are also reviewed for their satiating properties.
How their efficacy compares to other notable food derived peptides and how this efficacy can be lost, bolstered
or protected during gut transit is also summarized.

1. Introduction

Food intake is strongly linked to appetite (Blundell, Dalton, &
Gibbons, 2018). As we eat, peptide signals from the gut change our
attitude to food from the “hunger” state to the “satiation” state, re-
sulting in meal termination (Amin & Mercer, 2016). Arrival of food in
the stomach causes its distention and stimulates the release of satiety
signals. Satiety hormones are released from specialized enteroendocrine
cells along the length of the gut (Gribble & Reimann, 2016). These
hormones are the main connection between the gastrointestinal (GI)
system and the appetite center of the brain (Kaelberer et al., 2018).
Enteroendocrine cells account for less than 1% of all intestinal epithe-
lial cells and their types differ by hormone secretion patterns and lo-
calization within the gut (Worthington, Reimann, & Gribble, 2018).
Different enteroendocrine cells are capable of producing different gut
hormones, depending on circumstance (location, diet and/or metabolic
state). In general, I cells are found in the duodenum and jejunum and
predominantly secrete the family of cholecystokinin (CCK) anorexi-
genic peptides (Chaudhri, Small, & Bloom, 2006). Once released, CCK
peptides inhibit gastric emptying, improve secretion of insulin, soma-
tostatin, digestive enzymes from the pancreas and bile from the gall-
bladder (Chaudhri et al., 2006; Pathak, Flatt, & Irwin, 2018). Other
anorexigenic hormones, glucagon-like peptide-1 (GLP-1) and peptide
YY (PYY) are secreted by L cells, which are predominantly localized in

the ileum and colon (De Silva & Bloom, 2012; Holst, 2007). They
suppress appetite by delaying gastric emptying, promoting pancreatic
secretion and central nervous system signaling (Batterham et al., 2002).
Ghrelinergic cells in the fundus of the stomach secrete a unique or-
exigenic hormone, ghrelin, responsible for the feeling of hunger and
feeding behavior (De Graaf, Blom, Smeets, Stafleu, & Hendriks, 2004).
Many gut hormones undergo some form of post transcriptional mod-
ification to become active (e.g. CCK has active forms CCK-58, CCK-33,
CCK-22 and CCK-8) and have short circulating lifetimes (e.g. 2–5 min
for active GLP-1 (7-36) and GLP-1 (7-37)). In fact the endogenous
peptidase, dipeptidyl peptidase-IV (DPP-IV) can cleave active GLP-1
forms so that up to 75% of GLP-1 is inactivated before leaving the GI
tract (Chaudhri et al., 2006; Baggio & Drucker, 2007; Holst & Deacon,
2005). Other satiety hormones include gastrin-releasing peptide and
oxyntomodulin, although their properties are less well defined
(Cummings & Overduin, 2007). In addition, other gut hormones with a
board spectrum of biological responses such as somatostatin, en-
dogenous opioids, leptin and serotonin, all interact with satiety and
appetite signaling cascades (Pupovac & Anderson, 2002; Wei et al.,
2018; Worthington et al., 2018). For example, heterodimerization of G-
coupled protein receptors (GCPR) facilities crosstalk between ghrelin
and serotonin pathways (Schellekens et al., 2015). Insulin which is
tightly linked to blood glucose concentrations is in turn regulated by
GLP-1 and gastric inhibitory polypeptide (GIP).
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Since satiety hormone secretion is governed by food, appetite sup-
pressing bioactive compounds from foods offer an attractive alternative
to pharmacological solutions to control appetite, over one’s lifetime.
For example, epidemiological studies demonstrate that consumption of
dairy foods, especially low fat dairy, milk and yogurt can help to
maintain a healthy body weight (Dougkas, Reynolds, Givens, Elwood, &
Minihane, 2011; Feeney et al., 2017; Sayon-Orea, Martínez-González,
Ruiz-Canela, & Bes-Rastrollo, 2017). In addition, consumption of dairy
proteins may enhance efficacy of appetite suppressing drugs. For ex-
ample, intraduodenal infusions of milk protein concentrate increased
the effectiveness of sitagliptin, a pharmacological inhibitor of DPP-IV
(Olivos et al., 2014). However the link between dairy consumption,
food intake and weight loss is not without controversy. Intervention
trials with dairy products consumption, however without energy re-
striction, often do not lead to weight loss (Lanou & Barnard, 2008).
What is accepted, is that proteins are generally regarded as more sa-
tiating than other macronutrients (Morell & Fiszman, 2017). Small
peptides and amino acids (AAs) act via GCPR receptors, elevating in-
tracellular Ca2+ and/or cAMP concentrations, or via peptide/AA
transporters, which depolarize the enteroendocrine cell membrane,
triggering Ca2+ influx and activating satiety hormones secretory me-
chanisms (Tolhurst, Reimann, & Gribble, 2012; Santos-Hernández,
Miralles, Amigo, & Recio, 2018). Bovine milk proteins are a well-re-
cognized source of bioactive peptides, with documented anti-
hyperthensive, anti-thrombotic, opioid, anti-cancerogenic, im-
munostimulatory, antioxidant, antimicrobial as well as satiating
properties (Corrochano, Buckin, Kelly, & Giblin, 2018; Sultan, Huma,
Butt, Aleem, & Abbas, 2018). The average macronutrient composition
of milk is 3.4% fat, 4.9% carbohydrate and 3.3% protein. The protein
component of milk consists of 80% caseins (αs1, αs2, β and κ) and 20%
whey (β-lactoglobulin (β-LG), α-lactalbumin (α-LA), bovine serum al-
bumin (BSA), immunoglobulin (Ig) and lactoferrin (Lf)) (Ali, Lee, &
Rutherfurd-Markwick, 2019). In animal and human studies, casein
consumption generally leads to long-term satiety over 1–2 h, whereas
whey has a short term satiety effect, observable within 20–30 min post
consumption (Boirie et al., 1997; Hall, Millward, Long, & Morgan,
2003). This is likely related to the differences in rate of digestion in the
upper gut (Dalziel, Young, McKenzie, Haggarty, & Roy, 2017). This
review focuses on individual dairy-derived peptides and the evidence,
or otherwise, of their influence on satiety pathways. Dairy protein hy-
drolysates and intact dairy proteins are also reviewed for their satiating
properties. How their efficacy compares to other notable food derived
peptides is also discussed. The review concludes with an overview on
the mechanisms to protect bioactive peptides from the hydrolytic
conditions of the gut. The ability of dairy peptides to influence body
weight via lipid metabolism is not reviewed but has been reviewed
previously (Ricci-Cabello, Olalla Herrera, & Artacho, 2012; Torres-
Fuentes, Schellekens, Dinan, & Cryan, 2015).

2. Satiating bioactivity of caseins

2.1. Casein-derived peptides for satiety

Casein-derived peptides with satiety bioactivity demonstrated in
vitro, ex vivo and/or in vivo are presented in Table 1. β-casein derivative
β-casomorphin-7 (β-CM7, YPFPGPI) has attracted the most attention
due to its association to A1/A2 milk controversy (Küllenberg de Gaudry
et al., 2019), its opioid and antioxidant properties as well as its re-
sistance to degradation upon GI digestion (Jahan-Mihan, Luhovyy, El
Khoury, & Anderson, 2011). Osborne et al. (2014) demonstrated that β-
CM7 (125–1000 μM) stimulated 2–2.4 fold higher secretion of CCK-8
from STC-1 enteroendocrine mouse cells compared to HBSS vehicle
control (P < 0.05) (Osborne et al., 2014). However, no effect of β-CM7
on active GLP-1 secretion was observed for any of the tested con-
centrations over a 2 h incubation. Permeability studies of β-CM7 across
Caco-2 monolayers indicate cleavage of this peptide by brush border

membrane endopeptidases. Resulting peptide derivatives YP, GPI and
FPGPI were found both in apical and basolateral solutions with FPGPI
capable of stimulating secretion of CCK-8 from STC-1 cells (P < 0.05)
(Osborne et al., 2014). β-CM7 may contribute to the satiety properties
of fermented dairy foods, as its derivatives were identified in yogurt
produced by Streptococcus thermophilus and Lactobacillus delbrueckii ssp.
bulgaricus (Nguyen, Busetti, Johnson, & Solah, 2018). β-CM7 and its
fragment β-CM4 were also identified in vivo in human jejunum after
consumption of 30 g casein preload (Boutrou et al., 2013; Boutrou,
Henry, & Sanchez-Rivera, 2015). A rat study indicated that modified β-
casomorphins, at a dosage 179 mg/kg body weight, were effective in
slowing gastric emptying in pups of either sex (n = 10, body mass
28 ± 3 g) (Daniel, Vohwinkel, & Rehner, 1990). This action was at-
tributed to direct interaction of β-casomorphins with opioid receptors
in the gut (Pupovac & Anderson, 2002). In another trial with Sprague-
Dawley rats, β-CM7 stimulated production of somatostatin from mu-
cosal tissues after 30 days of intra-gastric feeding at a dosage 7.5 × 10-7

mol/L compared to the saline control (Zong, Chen, Zhang, & Zou,
2007). Similarly, postprandial somatostatin plasma levels were in-
creased after acute oral administration of 12 mg β-casomorphins to
dogs (Schusdziarra et al., 1983). Effects of this somatostatin release on
food intake were not studied in these trials, however involvement of
somatostatin in satiety signaling via interaction with G protein-coupled
somatostatin receptor subtype 2, inhibition of insulin and glucagon
release, slowing of gastric acid secretion and inhibition of gastric mo-
tility was reported previously (Lucey, 1986).

Glycomacropeptide (GMP, 106–169 AA) (Table 1) is derived from κ-
casein and is produced by the action of chymosin during cheese-making
or indeed during gut transit (Daniel et al., 1990). Polymorphisms and
levels of glycosylation of GMP influence its bioactivity, as GMP has 5
potential glycosylation sites available for carbohydrate chain attach-
ment (Ricci-Cabello et al., 2012; Yvon, Beucher, Guilloteau, Le Huerou-
Luron, & Corring, 1994). Effect of GMP and its carbohydrate-free form,
caseinomacropeptide (CMP), on satiety biomarkers and food intake was
demonstrated in cells, animals and humans (Luhovyy, Akhavan, &
Anderson, 2007). Carbohydrate chains, their binding sites and the
presence/absence of silaic acids were demonstrated to be important for
the direct activation of luminal receptors, leading to secretion of CCK
hormones (Yvon et al., 1994). Beucher, Levenez, Yvon, and Corring
(1994) demonstrated that κ-casein post in vitro gastric digestion
(187.5 mg/ml κ-casein), which presumably contained GMP, triggered a
significant rise in CCK levels (both CCK-8 and CCK-33 were recognized
by radioimmunoassay) when infused into isolated rat duodenojejunum
(Beucher et al., 1994). Partially glycosylated GMP, released from κ-
casein genetic variant A, was more effective at CCK stimulation, than
unhydrolysed casein or GMP from κ-casein variant B or CMP (Beucher
et al., 1994). At the same time glycosylation of CMP appears to slow its
digestion by brush border membrane endopeptidases, which limits its
bioaccessibility (Boutrou, Jardin, Blais, Tomé, & Léonil, 2008). In a
human trial with 25 healthy subjects, a significant decrease in food
intake ad libitum was observed for those receiving whey, compared to
those who received whey without GMP (2877 ± 165 kJ vs.
3208 ± 178 kJ, P < 0.05) (Veldhorst et al., 2009). However, no
effect of GMP was observed on postprandial plasma GLP-1 (active),
ghrelin, insulin and individual satiety ratings by visual analogue scale
(VAS) over the 120 min monitoring period. In a study with 10 women
and 10 men, gender by preload interaction was found with satiety and
energy compensation influenced more significantly in women after
consumption of GMP preload, compared to men (Burton-Freeman,
2008). However, there is conflicting data with a 7 week feeding trial in
50 Wistar rats, showing no effect on body weight gain for those animals
who received GMP-supplemented whey protein isolate (WPI) treat-
ment, (100 g or 200 g GMP/kg), compared to those fed WPI alone
(Royle, McIntosh, & Clifton, 2008). Interestingly, plasma insulin levels
were lowered by GMP addition to the WPI diet. In a study with 20
overweight and obese men no effect on GLP-1, food intake or subjective
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appetite rating was observed after consumption of 50 g GMP compared
to GMP-depleted whey (Clifton et al., 2009). Similarly in the work of
Keogh et al. (2010) consumption of 41.3 g of minimally glycosylated
GMP or 42.3 g of glycosylated GMP by 22 overweight or obese men
resulted in similar levels of secreted CCK-8, ad libitum food intake and
subjective appetite ratings (Keogh et al., 2010). In another work,
Gustafson, McMahon, Morrey, and Nan (2001) reported that con-
sumption of 0.4% and 2% CMP beverage did not alter ad libitum food
intake and subjective appetite ratings in 47 healthy adults (Gustafson
et al., 2001). Interestingly, GMP digestion with pepsin is documented to
suppress appetite via regulation of gastric secretion, gastric emptying
and CCK release (form not specified), whilst trypsin and chymotrypsin
digestion leads to loss of bioactivity (Madureira, Tavares, Gomes,
Pintado, & Malcata, 2010). Moreover, bovine GMP might have an in-
direct effect on satiety by promoting significant growth of beneficial gut
bacteria. Such Chen et al. (2012) fed 6-week old mice with 0.1 mg/day
GMP for 15 days and observed a 4.1 and 4.5-fold increase in Bifido-
bacteria and Lactobacilli respectively as a % of total fecal microbiota
compared to the control group (Chen et al., 2012). Both these beneficial
bacteria, Bifidobacteria (Vigsnæs, McConnell, & Salomonsson, 2017)
and Lactobacilli (Belguesmia et al., 2016), can promote secretion of
satiety hormones (GLP-1, PYY and CCK) up to 5-fold over 8 h incuba-
tion with STC-1 cells. However, long-term human studies are required
to confirm satiety bioactivities of this widely produced dairy ingredient.

Simulated GI digestion of micellar casein concentrate but not so-
dium caseinate, revealed a β-casein peptide, GPVRGPFPIIV (199-209
AA) (Table 1), capable of dose-dependently stimulating GLP-1 release
from the enteroendocrine cell line, GLUTag (Komatsu et al., 2019). A
maximum effective dose of 5 mM was observed compared to buffer
control (HEPES with 10 mM glucose). Interestingly, bioactivity of the
crude digesta was more effective in stimulating GLP-1 release than the
synthesized peptide, implying a synergistic effect with other bioactive
peptides within micellar casein concentrate. Casein peptide tracking
during skim milk powder digestion (in vitro dynamic and static models,
pig digesta samples) indicates the appearance of GPVRGPFPIIV during
the gastric phase and its rapid degradation during the duodenal phase
(Egger et al., 2017).

Casoxin C (YIPIQYVLSR) (Table 1), derived from trypsin hydro-
lysate of bovine κ-casein, is known mostly for exhibiting opioid an-
tagonism, however it also acts as an agonist of C3a receptors, resulting
in ileum contractions (Yoshikawa & Chiba, 1992). This biphasic con-
traction was observed in longitudinal muscle strips of guinea pig ileum
(Takahashi et al., 1998; Takahashi et al., 1997). This would be expected
to suppress food intake (Ohinata & Yoshikawa, 2008), but to date ca-
soxin C has not been tested in food intake studies. Its survival during
gut transit is also unknown. Interesting, casoxin C naturally occurs in
some semi-hard and ripening mold cheese varieties (Sienkiewicz-
Szłapka et al., 2009). Another opioid antagonist casoxin D (YVPFPPF)
(Table 1), derived from human αs1-casein by the action of pepsin and
chymotrypsin, has also demonstrated ileum-contracting bioactivity ex
vivo (Yoshikawa & Chiba, 1992).

RF (Table 1) is a dipeptide that has been identified in several pep-
tide sequences present in casein hydroylsate LFC25 (O'Halloran et al.,
2018) and lies within the bitter taste α-casein peptide LRF (Lemieux &
Simard, 1992). RF promotes secretion of CCK hormones from STC-1 via
intracellular Ca2+ influx in a dose-dependent manner (0.3–3 mM)
(Kagebayashi et al., 2012). Moreover, RF at a dosage of 10 mg/kg body
weight significantly reduced cumulative food intake in male ddY mice
1–2 h post administrated via intraperitoneal (I.p.) injection. At a con-
centration of 100 mg/kg body weight, RF also significantly suppressed
gut transit in ddY mice from 57% to 52% (P < 0.05) 30 min post oral
gavage.

Partial and temporal inactivation of DPP-IV activity by food com-
ponents could potentially prolong active GLP-1 circulation. More than
64 dairy peptides ranging in size from 2 to 14 AAs have been identified
as DPP-IV inhibitors in vitro (Nielsen, Beverly, Qu, & Dallas, 2017).

Interestingly, over 50% of them contain proline at the N-terminus, 22%
are derived from β-casein, 13% - from κ-casein, 6% - from αs2-casein
and 5% - from αs1-casein. Some of the DPP-IV inhibitory peptides, such
as WR, WK and WL, naturally occur in milk protein hydrolysates
(Nongonierma & FitzGerald, 2013). It is likely that some DPP-IV in-
hibiting peptides are also released from casein as it transits the hy-
drolytic conditions of the gut. For example, peptides LPVPQ (DPP-IV
inhibition IC50 = 43.8 ± 8.8 μM) and IPM (DPP-IV inhibition
IC50 = 69.5 ± 8.7 μM) were identified in human GI tract after milk
ingestion (Nongonierma & FitzGerald, 2016). A derivative of κ-casein
INNQFLPYPY was identified in the gastric digesta of premature infants
(Nielsen, Beverly, Underwood, & Dallas, 2018). It is important to note
that DPP-IV inhibition is usually demonstrated by enzymatic assays
rather than observation in live cells or in vivo (Iwaniak, Darewicz, &
Minkiewicz, 2018; Liu, Cheng, & Wu, 2019). DPP-IV inhibitory activity
could result in lower post-prandial glucose in vivo (Lacroix & Li-Chan,
2016). For instance, a β-casein peptide, LPQNIPPL (Table 1), inhibiting
DPP-IV with IC50 of 46 μM, measured by DPPIV-GloTM Protease Assay
Kit (Promega), was identified in a water-soluble extract of Gouda
cheese (Uenishi, Kabuki, Seto, Serizawa, & Nakajima, 2012). Adminis-
tration of 300 mg LPQNIPPL/kg body weight, to female Sprague-
Dawley rats (n = 6) resulted in a significantly lower (P < 0.02) post-
prandial glucose concentration over 120 min compared to the control
group (20% glucose solution without peptide) during a glucose toler-
ance test. This glucose reduction was attributed to the DPP-IV in-
hibitory activity of the peptide (Uenishi et al., 2012). Finally, Murray
et al. (2018), identified 11 peptides (12–56 AA in length) in β-casein
hydrolysate fractions, with predicted or demonstrated insulin secretion
modulation capabilities (Murray et al., 2018), but their ability to inhibit
DPP-IV, influence satiety signaling or secretion of the incretin hor-
mones GLP-1 or GIP was not investigated.

2.2. Casein hydrolysates for satiety

In many studies, individual peptide sequences have not been iden-
tified but rather evidence of satiety modulation is provided for casein
hydrolystes (Table 2). Chaudhari et al. (2017) prepared casein hydro-
lysates by enzymatic digestion with pepsin and pancreatin and then
proceeded to identify bioactive fractions (Chaudhari et al., 2017).
Fraction F7 from a 1 kDa permeate of casein hydrolysate increased
secretion of GLP-1 from STC-1 cells 2.5 fold and increased mRNA
transcript levels of the proglucagon gene 5-fold (P < 0.05). The active
mass peak of F7 fraction was determined by electrospray ionization-
mass spectrometry to be 786 DA, indicating a 7–8 AA peptide, however
the actual sequence remains unknown.

Schellekens et al. (2014) reported a 1 kDa permeate fraction of
sodium caseinate hydrolysate, produced by pepsin digest, capable of
acting as an agonist of the serotonin 5-HT2C receptor (Table 2)
(Schellekens et al., 2014). The serotonin pathway is a key modulator of
food intake and is targeted by the pharma industry for appetite sup-
pression (Coulter, Rebello, & Greenway, 2018). Human embryonic
kidney (Hek293A) cells expressing the 5-HT2C receptor increased cal-
cium flux in response to this fraction, indicating activation of serotonin
pathway (Schellekens et al., 2014). This 5-HT2C receptor activation
could not be explained by the presence of free tryptophan in the frac-
tion. The 5-HT2A and 5-HT2B receptors remained unresponsive. C57BL/
6 mice when I.p administrated with this sodium caseinate fraction, at a
dose of 500 mg/kg body weight, significantly (P < 0.01) reduced their
cumulative food intake compared to the vehicle control (HBSS with
20 mM HEPES) (Schellekens et al., 2014).

In our laboratory, 306 unique sodium caseinate hydrolysates were
generated by enzymatic hydrolysis or bacterial fermentation
(O'Halloran et al., 2018). These test samples were screened for their
ability to release Ca2+ or increase intracellular cAMP in STC-1 cells.
Increased levels of one or both of these biomarkers promote satiety
hormone exocytosis (Gribble & Reimann, 2017). A chymosin
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hydrolysate of sodium caseinate, LFC25, at 10 mg/ml (solids) sig-
nificantly (P < 0.05) increased Ca2+ in STC-1 cells compared to its
unhydrolysed control and buffer control (Krebs with 11 mM glucose).
Correspondingly, this resulted in a 2-fold increase in secretion of total
GLP-1 from STC-1 cells (P < 0.05) (O'Halloran et al., 2018). Free AAs
in LFC25 were not responsible for its bioactivity. However, LFC25 did
not increase mRNA transcript levels of CCK and significantly lowered
mRNA transcript levels of PYY compared to unhydrolysed casein. In
mice LFC25 at 750 mg/kg body weight suppressed cumulative food
intake over 8 h after I.p. administration compared to Hanks control
(O'Halloran et al., 2018), but did not have this effect after oral gavage
compared to unhydrolysed sodium caseinate (Kondrashina, Bruen,
et al., 2018). When administrated orally (15 g protein), no effect of
LFC25 on food intake, postprandial levels of active GLP-1, glucose and
insulin was observed in adult male pigs (Kondrashina, Bruen, et al.,
2018; Kondrashina, Papkovsky, et al., 2018; Kondrashina, Seratlic,
et al., 2018) or in humans (Le Roux, Engström, Björnfot, Fändriks, &
Docherty, 2016) compared to unhydrolysed control. A < 1 kDa frac-
tion of LFC25, containing only 4% protein, stimulated secretion of
296 pM GLP-1 from STC-1 cells, compared to 223 pM stimulated by
LFC25 (75% protein) (O'Halloran et al., 2018). In this bioactive frac-
tion, 17 of the most abundant peptides were identified, from which
88.2% were from αs1-casein and 11.8% - from β-casein. Two of the
abundant β-casein peptides (YQEPVLGPVRGPFPIIV and FLLYQEPVL-
GPVRGPFPIIV) contained sequence GPVRGPFPIIV (Table 1). If it is
responsible for LFC25 bioactivity, then its degradation early in the
duodenal phase (Egger et al., 2017) may explain the poor bioactivity of
LFC25 in the gut. Simulated gastrointestinal digestion revealed that
LFC25 lost 39% bioactivity during the gastric phase and 51% by the end
of duodenal phase (Kondrashina, Bruen, et al., 2018; Kondrashina,
Papkovsky, et al., 2018; Kondrashina, Seratlic, et al., 2018).

Cheese is made by the acidification of caseins, followed by casein
proteolysis during ripening with bacterial peptidases. Screening of 10
water soluble extracts (WSEs) of Irish Cheddar cheese over a 10 month
ripening period revealed GLP-1 stimulating bioactivity, using the STC-1
model, in 9 cheeses from 4 months ripening (Kondrashina, Seratlic,
et al., 2018). The free AA components of these water soluble extracts
were not positively correlated with GLP-1 bioactivity. One sample, C2-
WSE, impressively increased GLP-1 secretion from STC-1 cells 37-fold
at 8 months ripening compared to the vehicle control. However, when
fed at 750 mg/kg body weight to mice, there was no significant de-
crease in cumulative food intake over a 7 h period compared to the
reference cheese sample and saline controls, albeit food intake was
reduced at a single time point (6 h) (Kondrashina, Seratlic, et al., 2018).
Although post-prandial GLP-1 was not measured, this result infers that
the hydrolytic conditions of the GI tract destroy GLP-1 secreting
bioactivity of C2-WSE-8 M, outweighing the 62.9% increase in its DPP-
IV inhibitory activity. These results were supported by data from in vitro
GI digestion of C2-WSE-8 M with 68.6% and 99.9% loss of GLP-1
bioactivity by the end of gastric and intestinal phases respectively
(Kondrashina, Seratlic, et al., 2018).

Egger and Ménard suggested that the protein degradation during
gut transit could be as effective in releasing bioactive peptides from
dairy proteins as targeted hydrolysis during processing (Egger &
Ménard, 2017). Santos-Hernández (2018) observed that gastric diges-
tion of casein stimulated active GLP-1 secretion, while intestinal di-
gestion stimulated CCK hormones secretion from STC-1 cells (Santos-
Hernández, Tomé, Gaudichon, & Recio, 2018). In vivo jejunal digestas
of 3 subjects, who consumed a solution of 30 g of casein in 500 mL of
water (i.e. 6% w/v), significantly (P < 0.05) stimulated release of CCK
hormones and active GLP-1 from STC-1 cells. However, Geraedts,
Troost, Fischer, Edens, and Saris (2011) maintained that casein hy-
drolysate was less effective in stimulation of CCK hormones or GLP-1
release from STC-1 cells compared to unhydrolysed casein (Geraedts
et al., 2011).

It is important to note that casein hydrolysates and fractions are

likely to contain free AAs. Several AAs individually (lysine, histidine,
threonine, glutamic acid and methionine) and in combination are
known to stimulate secretion of GLP-1 from enteroendocrine cells
(Reimann, Williams, da Silva Xavier, Rutter, & Gribble, 2004; Reimer,
2006), but in several instances their role, if any, in hydrolysate bioac-
tivity remains unknown. Bitterness of dairy protein hydrolysates is also
likely to affect GI satiety response via taste receptors (Janssen et al.,
2011), but the role of bitterness, or any aromatic compound, in satiety
signaling is outside the remit of this review.

2.3. Native caseins for satiety

There is evidence that intact casein itself has satiating properties
(Table 2). However, the physiological relevance of testing intact casein
on enteroendocrine cell lines is questionable given that the GI tract will
ensure casein is hydrolysed upon consumption. In vitro, intact casein at
a concentration of 10 mg/ml applied directly to STC-1 cells resulted in a
5-fold increase in secretion of active GLP-1 over 4 h (Kondrashina,
Papkovsky, & Giblin, 2018). No corresponding increase in mRNA
transcript levels of proglucagon was observed indicating intact casein
influenced GLP-1 exocytosis from intracellular stores rather than its
production. Similarly, in the work of Rafferty et al. (2011), intact β-
casein but not α-casein increased secretion of GLP-1 from STC-1 cells,
while intracellular GLP-1 content remained unchanged (Rafferty et al.,
2011). In the human NCI-H716 cell line, β-casein effectively stimulated
GLP-1 secretion (3-fold increase) compared to the vehicle control
(Wazzan, 2018). Surprisingly, in this enteroendocrine cell line proglu-
cagon mRNA transcript levels were also significantly increased by α-, β-
and κ-caseins. Such discrepancies between cell lines underscore the
need to use a toolbox of satiety biomarkers and to test in vivo (Kuhre
et al., 2016). In other work, intact α-casein was reported to be a su-
perior GLP-1 stimulator compared to β- and κ-casein and this bioac-
tivity survived hydrolysis with pepsin or trypsin over 90 min, but was
destroyed by chymotrypsin (Gillespie & Green, 2016). Indeed, Geraedts
et al. (2011) reported that simultaneous treatment of STC-1 cells with
native or hydrolysed casein and trypsin for 30 min significantly im-
proved secretion of CCK hormones but not GLP-1, compared to the
treatment with casein/casein hydrolysate alone (Geraedts et al., 2011).
In our work, levels of total GLP-1 secreted by STC-1 cells in response to
sodium caseinate gradually increased over time during simulated gas-
trointestinal digestion, with a 150% increase in bioactivity after the
gastric phase and 200% after duodenal digestion compared to time zero
(P < 0.01) (Kondrashina, Bruen, et al., 2018). In fact, 15 min after
arrival in the duodenal phase, sodium caseinate equaled LFC25 in its
ability to secrete GLP-1 from STC-1 cells (Kondrashina, Bruen, et al.,
2018) and increase post-prandial GLP-1 levels in 13 participants in a
crossover study (15 g sodium caseinate or LFC25) (Le Roux et al.,
2016). This study and the study by Egger et al., 2017 provides evidence
that the hydrolytic conditions of the GI tract will convert intact casein
into individual peptides, some of which are GLP-1 secretagogues.

Pipken et al. (2016) reported that 1% (w/v) intact casein (sodium
caseinate, 82% purity) significantly (P < 0.05) stimulated release of
GLP-1 and PYY from ileal segments of porcine intestines via release of
serotonin from duodenum and ileum (Ripken et al., 2016). However, in
an acute study with C57BL/6 mice (n = 6), intact β-casein at a dosage
500 mg/kg did not alter plasma GLP-1 and blood glucose levels, mea-
sured 30 min post oral gavage (Rafferty et al., 2011). Daily consump-
tion of 60 g casein over 12 weeks by 13 healthy volunteers resulted in
increases of postprandial GLP-1 by 878 pmol/L × 360 min (P = 0.003)
compared to the consumption of whey (Bohl et al., 2015).

3. Satiating bioactivity of whey

3.1. Whey peptides for satiety

The bioactive properties of whey proteins have been recently
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reviewed (Dullius, Goettert, & de Souza, 2018). Table 3 lists the whey
peptides with reported satiety bioactivity. Peptide ALPMH was identi-
fied in a β-LG hydrolysate, produced by pepsin and trypsin digestion,
and has proven angiotensin-converting-enzyme inhibitory properties
(Tulipano, Faggi, Cacciamali, & Caroli, 2017). At a concentration of
2 mM ALPMH increased secretion of CCK from STC-1 cells by 20 fold
after a 12 h incubation compared to the DMEM (without serum) vehicle
control (P < 0.01). To investigate whether the length of this peptide
was important for its bioactivity, di- and tripeptides (LA, LL, LV, IPA
and IPI) were synthesized and similarly assayed (Tulipano et al., 2017).
None of these synthetic peptides stimulated significant increases in CCK
(26–33) secretion at 2 mM concentration. Another dipeptide YL also
present in β-LG, failed to stimulate secretion of active GLP-1 and CCK-8
from STC-1 cells at concentrations 0.125–1 mM (Osborne et al., 2014).
Interestingly, synthesized scrambled sequence of ALPMH (PHLMA) in-
creased CCK (26–33) secretion, suggesting that the length of peptide
and the presence of certain AAs rather than the specific sequence were
responsible for the observed bioactivity (Tulipano et al., 2017). It is
important to note, that a 12 h incubation is not physiologically relevant
for enterendocrine cells to interact with whey peptides, as whey has a
digestibility indispensable AA score of 1.09 (Rutherfurd, 2015) and AAs
can arrive in the blood stream as quickly as 30 min post whey ingestion
(Luhovyy et al., 2007). At the same time, hydrolysates of β-LG and α-LA
were 2–4 times more effective in stimulation of CCK (26–33) secretion
from STC-1 cells compared to ALPMH peptide, suggesting bioactive
synergies (Tulipano et al., 2017). In addition, effective concentrations
of ALPMH (1–2 mM), could not be reached when β-LG underwent a
simulated GI digestion (Tulipano et al., 2017), implying insufficient
activity in the gut lumen post consumption of whey/β-LG. To generate
large amounts of ALPMH a number of techniques, including microbial
fermentation, enzymatic hydrolysis, chemical synthesis and re-
combinant DNA techniques have been explored by González-Ortega,
López-Limón, Morales-Domínguez, and Soria-Guerra (2015) (González-
Ortega et al., 2015).

Recently a ghrelin-secreting cell line mouse-grelinoma 3–1 (MGN3-
1) was developed by Iwakura et al. (2010) which allows for screening
peptides capable of suppressing ghrelin release (Iwakura et al., 2010).
Aoki et al. (2017) identified lacto-ghrestatin, a 9 AA peptide LIVTQT-
MKG, produced by thermolyisin hydrolysis of β-LG, which lowered
ghrelin secretion in vitro and in vivo (Aoki et al., 2017). LIVTQTMKG
dose-dependently (10–100 μM) decreased secretion of acylated ghrelin
from MGN3-1 cells over a 4 h incubation. Such regulation of ghrelin
secretion is probably mediated via cAMP signaling, as cAMP levels in
MGN3-1 cells treated with forskolin were decreased 2-fold when in-
cubated with 100 μM LIVTQTMKG for 30 min. Moreover, mRNA
transcript levels of preproghrelin and genes responsible for ghrelin ac-
tivation were significantly reduced in MGN3-1 upon treatment with
LIVTQTMKG. At a dosage of 1 mg/kg body weight this peptide de-
creased food intake over 4 h and plasma ghrelin levels 1 h post oral
administration in fasted male ddY mice (n = 17), compared to the
saline control. However, in non-fasted mice, basal ghrelin level was 4-
fold lower and administration of LIVTQTMKG (1 g/kg body weight) had
no effect within the same time period. A dipeptide of lacto-ghrestatin,
LI, also suppressed ghrelin secretion from MGN3-1 cells, albeit less ef-
fectively, and was therefore not evaluated in mice (Aoki et al., 2017).

β-lactotensin (HIRL), derived from a chymosin digest of bovine β-LG
, is known for its ileum contracting bioactivity, which was studied with
longitudinal muscle of guinea pig ileum (Pihlanto-Leppälä, Paakkari,
Rinta-Koski, & Antila, 1997). β-lactotensin shares homology to anor-
exigenic tridecapeptide neurotensin and acts as a neurotensin receptor
agonist (Yoshikawa, 2015). Hou, Yoshikawa, and Ohinata (2009) I.p.
injected β-lactotensin at the dosage of 100 mg/kg body weight and
administrated β-lactotensin orally at the dosage 500 mg/kg body
weight to fasted C57BL/6J mice and in both instances observed a sig-
nificant decrease in food intake (P < 0.05). Surprisingly, the me-
chanism appeared not to involve the neurotensin receptor but rather

the corticotrophin releasing factor (Hou et al., 2009).
Another ileum contracting peptide AFKAWAVAR named albutensin

A was derived from serum albumin hydrolysed with trypsin (Yoshikawa
& Chiba, 1992). It has an IC50 = 3 μM for contraction of guinea pig
ileum muscle. Albutensin A delayed gastric emptying and decreased
food intake in fasted dYY mice when I.p. administrated at the dose
0.3–1.0 μmol/mouse (Ohinata et al., 2002). It is believed that albu-
tensin A acts via the C3a receptor (Ohinata et al., 2002), which plays a
role in food intake regulation (Ohinata & Yoshikawa, 2008).

In 1984, Jahnke and Lazarus reported a bombesin-related peptide,
with Mr of 3200, in bovine whey (Jahnke & Lazarus, 1984). Con-
centration of this peptide in whey can reach 1.2 ng/ml (Jahnke &
Lazarus, 1984), which may be sufficient to interfere with endogenous
gastrin releasing peptide (GRP) activity in the human gut. Recently it
was demonstrated, that GRP and its homolog bombesin (Pyr-QRLGN-
QWAVGHLM-NH2) act in the upper GI tract to reduce meal size and
frequency (Washington, Aglan, & Sayegh, 2014). De Graaf et al. (2004)
linked this endogenous peptide to appetite and food intake suppression
via stimulation of CCK release (form is not specified) in animals and
humans (De Graaf et al., 2004). Moreover, bombesin can increase levels
of somatostatin secretion from perfused rat stomach (DuVal et al.,
1981). Later studies demonstrated that GPR can inhibit gastric emp-
tying and food intake by activation of GPCRs (Sayegh, 2013). A recent
review draws attention to involvement of bombesin in stress-induced
anorexia (Merali, Graitson, Mackay, & Kent, 2013). Interestingly, ad-
ministration of bombesin with GLP-1 for 25 days via aorta infusion
reduced food intake, meal size, number of meals and body weight in
diet-induced obese Sprague Dawley rats more, than each peptide ad-
ministrated separately (Mhalhal, Washington, Newman, Heath, &
Sayegh, 2018). Whether milk borne GRP survives processing and gut
transit to mediate an effect has not been ascertained.

There are a large number of peptides encrypted in whey proteins
that act as DPP-IV inhibitors in vitro (Tulipano, Sibilia, Caroli, & Cocchi,
2011). For example, Silveira, Martínez-Maqueda, Recio, and
Hernández-Ledesma (2013) identified peptide IPAVF from the trypsin
digest of β-LG with remarkable DPP-IV inhibition activity in vitro
(IC50 = 44.7 μM) (Silveira et al., 2013). From a database of milk
bioactive peptides 25% of DPP-IV inhibitory peptides are derived from
Lf, 17% from β-LG and 8% from α-LA. VAGTWY was identified from a
trypsin digest of β-LG (Uchida, Ohshiba, & Mogami, 2011). This hex-
apeptide dose-dependently inhibited DPP-IV activity with IC50 of
174 μM, measured with Gly-Pro-p-nitroaniline substrate, while the
crude β-LG hydrolysate has an IC50 = 210 μM. VAGTWY was able to
significantly decrease postprandial blood glucose level over 120 min in
glucose tolerance test, when orally administrated at a concentration of
300 mg/kg body weight to 10 fasted mice, compared to 0.01 M Tris-HCl
buffer vehicle control. However post-prandial insulin was unaffected
suggesting the glucose lowering observation may not be via DPP-IV
inhibition or extension of GLP-1 half-life, but rather increased glucose
uptake by hepatocytes (Tsuda, Iwasawa, Yokoyama, & Yamaguchi,
2017). Interestingly, DPP-IV inhibitory peptides IPAVFKIDA, IQKVA-
GTW and LKPTPEGDLE derived from β-LG were identified in vivo in the
stomach of infants 2 h post consumption of mother’s milk supplemented
with infant formula (Nielsen et al., 2018).

3.2. Whey hydrolysates for satiety

Table 4 lists whey hydrolysates and proteins with satiety outputs in
vitro and/or in vivo. Commercial whey hydrolysate DH32 (degree of
hydrolysis 32%; 78.0% (w/w) protein, Carbery Ingredients) sig-
nificantly stimulated secretion of insulin from BRIN BD11 β-cells and
inhibited DPP-IV enzymatic activity (IC50 = 1.5 mg/ml) compared to
the positive control (16.7 mM glucose and 10 mM Ala) and intact whey
(Power-Grant et al., 2015). Another hydrolysate DH45 (degree of hy-
drolysis 45%; 84.0% (w/w) protein, Glanbia Nutritionals, Ireland) also
demonstrated DPP-IV inhibitory properties (IC50 = 1.1 mg/ml)
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compared to unhydrolysed whey, but did not improve insulin secretion
from BRIN BD11 β-cells. Neither of these hyrolysates could increase
GLP-1 secretion from STC-1 cells above Krebs-1% BSA vehicle control,
containing 1.8 g/l glucose (Power-Grant et al., 2015).

In contrast, simulated gastrointestinal digestas of whey protein
promoted a dose-dependent (0.25–4 mg/ml) secretion of both GLP-1
and CCK hormones from STC-1 cells (5 and 10-fold respectively)
compared to the vehicle control (Santos-Hernández et al., 2018). In vivo
jejunal aspirates collected from 3 subjects, 1 h post consumption of a
30 g of a whey preload, as well significantly stimulated release of CCK
hormones and GLP-1 from STC-1 cells (Santos-Hernández et al., 2018).

A 1 kDa permeate fraction of whey protein isolate digested with
pepsin increased calcium influx and activated the serotonin 5-HT2C
receptor in transfected Hek cells (Schellekens et al., 2014). However, as
distinct from its casein counter in Table 2, it was unable to suppress
food intake in male C57BL/6 mice, when I.p. administrated at a dose
500 mg/kg body weight.

3.3. Intact whey proteins for satiety

Proglucagon mRNA transcript levels were increased significantly in
NCI-H716 cells exposed to whey protein concentrate (WPC, 2-fold) and
WPI (1.5-fold) (Wazzan, 2018). This resulted in a corresponding in-
crease in total GLP-1 secretion. Previously our laboratory has shown
that WPC significantly increased GLP-1 secretion from STC-1 cells
(189.8 pM) compared to Krebs (81.4 pM) (Power-Grant et al., 2015).
Gillespie, Calderwood, Hobson, and Green (2015) suggested that α-LA
made the biggest contribution (Gillespie et al., 2015). β-LG also induced
GLP-1 secretion but the result was confounded by its cell proliferation
capacity (Gillespie et al., 2015). However, both groups reported loss of
bioactivity once whey proteins were exposed to GI enzymes (Gillespie
et al., 2015; Power-Grant et al., 2015). In agreement, GLP-1 secreta-
gogue bioactivity of WPI, β-LG and α-LA was lost after simulated GI
digestion with INFOGEST protocol whilst DPP-IV inhibition activity
was increased 10-fold (Corrochano, Arranz, et al., 2018). Individual
whey proteins (Lf and α-LA) constituting 15% of the diet (15 g protein),
have been fed to diet-induced obese rats (n = 7–8) (Zapata, Singh, &
Chelikani, 2018). Both whey proteins increased plasma concentrations
of PYY and PYY mRNA transcript levels in the colon, and reduced food
intake compared to the dairy-free control diet, with Lf being the most
potent (Zapata et al., 2018).

Compared to casein, there is quite a considerable number of human
studies investigating the effect of whey consumption on satiety bio-
markers in the blood. Whether the satiety effect, if any, is a result of
bioactive whey peptides release during gut transit or the release of AAs
has yet to be determined. For example, Chungchunlam, Henare,
Ganesh, and Moughan (2016) served 20 healthy women a preload en-
riched with 50 g of intact WPI or an AA mixture mimicking WPI
(Chungchunlam et al., 2016). No difference was found in subjective
hunger and food intake ad libitum, suggesting that the unique AA profile
of whey is responsible for its satiating properties. In overweight men
(n = 19), ghrelin levels were significantly lower 120 and 180 min post
administration of WPI (55 g), compared to an isocaloric glucose preload
(60 g) (Bowen, Noakes, Trenerry, & Clifton, 2006). In the same study ad
libitum energy intake was significantly lower and CCK hormones se-
cretion (over 180 min) was significantly higher after WPI consumption
(4.279 MJ) compared to the consumption of glucose (4.772 MJ). Con-
sumption of whey preload by healthy young men was shown to reduce
postprandial glucose and insulin, but GIP levels over 230 min remained
unaffected (Akhavan et al., 2014). In another study with 13 older men
consumption of liquid preload with 70 g whey protein led to slowed
gastric emptying, significantly lower ghrelin, higher GLP-1 and CCK
compared to the mixed macronutrient preload of the same caloric value
(280 kcal), however food intake was not lowered (Giezenaar et al.,
2018). Similarly, in the work of Rigamonti et al. (2019), consumption
of 45 g whey in a liquid preload by 9 obese women significantly

increased plasma levels of GLP-1 and PYY, when postprandial glucose
levels were significantly lower compared to isocaloric maltodextrin
preload (Rigamonti et al., 2019). This result was supported by sig-
nificantly higher satiety ratings of whey protein by visual analogue
scale (VAS), however, ad libitum food intake was not lowered at
120 min compared to maltodextrin preload. The fact that increases in
satiety hormone levels following protein consumption are not always
correlated to decreases in food intake supports the evidence that there
are other crucial parameters in food intake, such as sensory, social and
cognitive factors (Kaelberer et al., 2018).

4. Efficacy of dairy-derived peptides/hydrolysates compared to
other food-derived peptides and hydrolysates

To investigate the efficacy of dairy derived peptides/hydrolysates
on satiety hormone secretion, we compared these bioactives in terms of
molarity (peptides) or mg/ml powder (hydrolysates) to each other and
to a number of peptides/hydrolysates form other food sources (pea,
turmeric, beef, olive leaf and grape seed). Tulipano et al. (2017) re-
vealed β-LG derivative ALPMH as the most potent of 9 peptides assayed
for CCK stimulating potential in STC-1 cells (Tulipano et al., 2017). At a
concentration of 1 mM it stimulated approximately 13-fold increase in
secretion of CCK hormones (312 pg/ml) after 12 h incubation compared
to the DMEM control. Other peptides studied in this system, β-CM7
(1 mM) and its derivative FPGPI (1 mM), resulted in 1.9- and 1.7-fold
increase in CCK hormones over 3 h incubation respectively (Osborne
et al., 2014). Pea hydrolysate B1 and B2 at concentration 1 mg/ml
stimulated secretion of 515 and 586 pg/ml CCK hormones from STC-1
cells within 30 min, 3.12–3.55-fold increase, compared to 165 pg/ml
with intact pea protein (Geraedts et al., 2011). The turmeric plant ex-
tract (50 mg/ml) resulted in 379 pg/ml CCK hormones and 347 pg/ml
GLP-1 secretion from STC-1 cells within 60 min compared to 3.7 pg/ml
and 8.6 pg/ml respectively by the short chain fatty acid control (102
and 40-fold increase) (Planes-Muñoz, López-Nicolás, González-
Bermúdez, Ros-Berruezo, & Frontela-Saseta, 2018).

β-casein peptide GPVRGPFPIIV (5 mM) stimulated secretion of GLP-
1 1.56-fold from GLUTag cells (from 825 to 1286 pg/ml) compared to
buffer control (HEPES with 10 mM glucose) over 1 h incubation
(Komatsu et al., 2019). However, beef hemoglobin peptide TKAVEH at
a concentration 0.1 mM increased secretion of active GLP-1 20-fold
(from 122 to 2549 pg/ml) in STC-1 cells compared to HEPES-Tris buffer
control after a 2 h incubation (Caron et al., 2016). Other beef he-
moglobin peptides with potent GLP-1 bioactivity, KAAVT, YGAE and
ANVST, when added at 1 mM to STC-1 cells resulted in secretion of
4169, 4004 and 2911 pg/ml GLP-1 respectively (Caron et al., 2016).
Olive leaf extract (1 mg/ml) increased secretion of GLP-1 from STC-1
cells 1.66-fold after 3 h incubation compared to buffer control (HEPES
with 10 mM glucose) (Rafferty et al., 2011). Geraedts et al. (2011)
reported an impressive 16-fold increase in GLP-1 secretion by 1 mg/ml
B2 pea protein hydrolysate (45813 pg/ml) compared to HBSS control
(Geraedts et al., 2011). Interestingly, this bioactivity appeared resistant
to hydrolysis with trypsin.

Orally administrated hydrolysate of sodium caseinate, LFC25, failed
to suppress food intake in mice (750 mg/kg body weight), pig (15 g
protein contributed by LFC25, av. 429 mg/kg body weight) or in hu-
mans (15 g protein contributed by LFC25, av. 213 mg/kg body weight)
compared to unhydrolysed casein (Kondrashina, Bruen, et al., 2018; Le
Roux et al., 2016). LFC25 consumption, in pigs and humans, resulted in
similar increases in post-prandial plasma GLP-1 to casein consumption
which were in turn significant compared to the time zero. Oral gavage
of C57BL/6 mice with 100 mg/kg body weight olive leaf extract to-
gether with glucose (18 mmol/kg) led to a significant increase (1.48
fold, P < 0.05) in post-prandial plasma GLP-1 levels 30 min post
consumption, compared to the glucose only control (Rafferty et al.,
2011). Grape-seed procyanidin extract (GSPE) administrated to Wistar
rats at concentration 1 g/kg body mass stimulated 1.34-fold increase in
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GLP-1 secretion and 1.32-fold increase in PYY from ileum and colon
segments compared to the tap water control (Casanova-Martí et al.,
2017). Moreover, consumption of GSPE at dosage 846 mg/kg body
weight significantly decreased food intake in Wistar rats over 20 h
compared to the tap water control (Serrano et al., 2017).

From a DPP-IV inhibition perspective, β-casein LPQNIPPL has an
IC50 = 46 μM (Uenishi et al., 2012), whilst β-LG VAGTWY has an
IC50 = 174 μM (Uchida et al., 2011) and the beef hemoglobin front
runner, peptide VAAA, has IC50 = 141 μM (Caron et al., 2016) in vitro.
Based on the data reviewed, plant-based ingredients both effectively
stimulated satiety signaling in vitro and reduced food intake in vivo al-
beit unhydrolysed controls were often omitted. From a dairy perspec-
tive, β-casein peptides favorably compared to peptides/hydrolysates
from other food sources as GLP-1 secretagogues and DPP-IV inhibitors
with β-LG peptides targeting CCK hormones secretion. However, dif-
ferent enteroendocrine cell lines, the heterogeneity of enteroendocrine
cell types, different incubation times, seeding density and different
controls make direct comparison difficult. Moreover even for similar
experimental designs, a variety of hormone immunoassays (RIA, ELISA,
EIA), produced by different manufacturers with a range of specificity
and cross-reactivity, have limited laboratory to laboratory comparisons.

5. Delivery systems for bioactive peptides

Orally administered proteins and peptides are generally broken
down during GI digestion by proteolytic enzymes during the gastric or
intestinal phase as well as by brush border membranes of the intestinal
barrier. Hence only a small percentage of approved therapeutic pep-
tides are orally delivered (Usmani et al., 2017). Pharmacological pep-
tide solutions to appetite suppression include analogues of GLP-1 (lir-
aglutide, exendin-4, semaglutide) (Lau et al., 2015; Marre et al., 2009;
Sonne, Engstrøm, & Treiman, 2008) and structural variants of CCK (De
Silva & Bloom, 2012; Pathak et al., 2018), administrated by injection
rather than the oral route. These enzyme resistant forms of hormones
can bind to corresponding receptors and stimulate satiety signaling,
while their prolonged circulation results in stable effects on appetite
(Nauck et al., 2006). Other peptides that are stable to enzymatic de-
gradation include glycated CCK-8, (pGlu-Gln)-CCK-8, (pGlu-Gln)-CCK-
8-PEG, CCK-7-PEG, CCK-9-PEG and CCK-10-PEG, which are shown to
exhibit satiety effects (Pathak et al., 2018). Twice daily injection of
25 nmol/kg (pGlu-Gln)-CCK-8 to high-fat-fed mice decreased body
weight by 25% and accumulated food intake by 19%, lowered non-
fasting plasma glucose levels and significantly improved insulin sensi-
tivity over 28 days study compared to the saline control (Irwin et al.,
2012). The peptidic triagonst HXQGTFTSDKSKYLDERAAQDFVQWLL-
DGGPSSGAPPS-NH2, which interacts with GLP-1, GIP and glucagon
receptors, was tested in rat model of obesity (Finan et al., 2014). This
triagonist reduced body weight of male HFD mice by 20%, cumulative
food intake by 33% and significantly improved I.p. glucose tolerance
after 10 days treatment with 3 nmol/kg dosage compared to the vehicle
control. However, the daily injection regime and common side effects of
nausea, constipation and diarrhea make hormone analogues un-
attractive for long term use (Astrup et al., 2012). As an alternative,
increased circulation time of endogenous GLP-1 is achieved by ad-
ministration of DPP-IV inhibitors, such as alogliptin, omarigliptin, si-
tagliptin, saxagliptin, etc., which are available in the oral form (Berger
et al., 2018). Interestingly, such inhibitors are more effective in the
treatment of diabetes than for weight management (Drucker & Nauck,
2006). However bearing in mind that DPP-IV has other peptidic sub-
strates in vivo, prolonged inhibition of DPP-IV may lead to as yet un-
known side effects (F. Gribble, 2008).

The most common approaches for protecting orally administered
peptides (food derived or pharmacological) during gastric transit to the
small or large intestine are protease inhibitors, structural modification
of the peptide and encapsulating the peptide in a protective coating.
However, protease inhibitors can interfere with the healthy GI digestion

and nutrient absorption, whereas structural modification requires a
specific system for each peptide to ensure the modifications do not
interfere with the activity of the peptide, making these options less than
ideal for food companies. The encapsulation of peptides is based on the
protection and subsequent release from an encapsulation device with or
without an additional coating, for targeted delivery to the small intes-
tine or colon. The release mechanism can be triggered by changes in
pH, time or digestion by intestinal bacteria. Due to the similar pH in the
small and large intestine, precise pH-based release in the colon is hard
to achieve. Colon targeted pH release systems normally begin releasing
in the ileum of the small intestine (McConnell, Short, & Basit, 2008)
whereas time-based systems rely on a continual release, which is nor-
mally controlled by adjusting the rate of swelling. The natural polymers
chitosan (Yuan, Jacquier, & O'Riordan, 2018) and alginate (Xing,
Dawei, Liping, & Rongqing, 2003) have been used in systems for the
colonic delivery of insulin and bee venom peptide, respectively. In gels
composed of cross-linked alginate and chitosan, the ratio of alginate to
chitosan determined the rate of release of bovine serine albumin (Xu,
Zhan, Fan, Wang, & Zheng, 2007). Time release systems for the colonic
delivery of insulin have also been produced based on hydroxypropyl
methylcellulose (HPMC) and polymethacrylate (Del Curto et al., 2014;
Maroni et al., 2016). Protective coatings that are designed to be di-
gested by intestinal bacteria are generally based on carbohydrate
polymers such as chitosan, pectin and starch and its components such as
amylose (Gough et al., 2018). Other encapsulating structures can be
protein-based (Doherty et al., 2011; O’Neill, Egan, Jacquier, O’Sullivan,
& O’Riordan, 2015), lipids including liposomes, solid/lipid nano par-
ticles, micro- and nano emulsions (McClements, 2018; Mohan,
Rajendran, He, Bazinet, & Udenigwe, 2015) or self-assembled structures
(Mosquera, Szyszko, Ho, & Nitschke, 2017). Polymers are normally
used in conjunction with a binder such as ethyl cellulose or hydro-
xypropyl methylcellulose or a crosslinking agent such as glutaraldehyde
(Shukla & Tiwari, 2012; Sinha & Kumria, 2001), all of which are ac-
ceptable for pharmaceutical application and food supplements. How-
ever, for including encapsulated bioactive peptides into food, it is ne-
cessary to limit the use of polymers to generally regarded as safe
(GRAS) and food-grade materials, with a trend towards clean-label,
kosher, halal or vegan composition and low processing history. An
additional challenge is the cost and scale of encapsulation as food ap-
plications require the lowest possible cost and a reasonable scalability,
both of which are still difficult to achieve. Current and future trends in
encapsulation will include the protection of peptides within the food
matrix itself such as in GI-stable emulsions as part of the natural or
processed food matrix.

6. Concluding remarks

There is evidence that dairy protein consumption is satiating. To
date, the majority of identified dairy peptides for satiety have been
derived from either β-casein or β-LG. Several of those identified pep-
tides have comparable bioactivities (GLP-1, CCK stimulation and DPP-
IV inhibition) to peptides from other food sources. The advantage for
dairy proteins is that they can be consumed in large quantities, as in-
gredients across a wide variety of food matrices. Such ingredients may
decrease portion size and food intake over time. However surviving gut
transit is a significant challenge. Indeed the solution maybe to harness
the hydrolytic conditions of the gut to increase bioactive efficacy. With
overweight and obesity affecting 12% of the world population
(Fellinger et al., 2019), there are considerable commercial opportu-
nities for scientifically-substantiated satiety-enhancing food peptides.
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