68 research outputs found

    Towards a nonequilibrium Green's function description of nuclear reactions: one-dimensional mean-field dynamics

    Get PDF
    Nonequilibrium Green's function methods allow for an intrinsically consistent description of the evolution of quantal many-body body systems, with inclusion of different types of correlations. In this paper, we focus on the practical developments needed to build a Green's function methodology for nuclear reactions. We start out by considering symmetric collisions of slabs in one dimension within the mean-field approximation. We concentrate on two issues of importance for actual reaction simulations. First, the preparation of the initial state within the same methodology as for the reaction dynamics is demonstrated by an adiabatic switching on of the mean-field interaction, which leads to the mean-field ground state. Second, the importance of the Green's function matrix-elements far away from the spatial diagonal is analyzed by a suitable suppression process that does not significantly affect the evolution of the elements close to the diagonal. The relative lack of importance of the far-away elements is tied to system expansion. We also examine the evolution of the Wigner function and verify quantitatively that erasing of the off-diagonal elements corresponds to averaging out of the momentum-space details in the Wigner function.Comment: 78 pages, 30 figure

    The 2018 biomembrane curvature and remodeling roadmap

    Get PDF
    The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo-and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area

    Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties

    Get PDF
    High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services

    Accounting for multiple ecosystem services in a simulation of land‐use decisions: Does it reduce tropical deforestation?

    Get PDF
    Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decisionmaking. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi-objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decisionmakers, who may have different expectations about the future. When optimizing only socio-economic objectives, the model continues the past trend in deforestation (1975–2015) in the projected land-use allocation (2015–2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio-economic objectives has heterogeneous effects on land-use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%–80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies

    The diagnostic value of ultrasonography-derived edema of the temporal artery wall in giant cell arteritis: a second meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasonography of temporal arteries is not commonly used in the approach of patients with suspected giant cell arteritis (GCA) in clinical practice. A meta-analysis of primary studies available through April 2004 concluded that ultrasonography could indeed be helpful in diagnosing GCA. We specifically re-examined the diagnostic value of the ultrasonography-derived halo sign, a dark hypoechoic circumferential thickening around the artery lumen, indicating vasculitic wall edema, in GCA.</p> <p>Methods</p> <p>Original, prospective studies in patients with suspected GCA that examined ultrasonography findings of temporal arteries using the ACR 1990 classification criteria for GCA as reference standard, published through 2009, were identified. Only eight studies involving 575 patients, 204 of whom received the final diagnosis of GCA, fulfilled technical quality criteria for ultrasound. Weighted sensitivity and specificity estimates of the halo sign were assessed, their possible heterogeneity was investigated and pooled diagnostic odds ratio was determined.</p> <p>Results</p> <p>Unilateral halo sign achieved an overall sensitivity of 68% (95% CI, 0.61-0.74) and specificity of 91% (95% CI, 0.88-0.94) for GCA. The values of inconsistency coefficient (I<sup>2</sup>) of both sensitivity and specificity of the halo sign, showed significant heterogeneity concerning the results between studies. Pooled diagnostic odds ratio, expressing how much greater the odds of having GCA are for patients with halo sign than for those without, was 34 (95% CI, 8.21-138.23). Diagnostic odds ratio was further increased to 65 (95% CI, 17.86-236.82) when bilateral halo signs were present (sensitivity/specificity of 43% and 100%, respectively). In both cases, it was found that DOR was constant across studies.</p> <p>Conclusion</p> <p>Temporal artery edema demonstrated as halo sign should be always looked for in ultrasonography when GCA is suspected. Providing that currently accepted technical quality criteria are fulfilled, halo sign's sensitivity and specificity are comparable to those of autoantibodies used as diagnostic tests in rheumatology. Validation of revised GCA classification criteria which will include the halo sign may be warranted.</p

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity

    Get PDF
    Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (n(NationMS) = 946, n(BIONAT) = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-β-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS
    corecore