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Compositional diversity of rehabilitated tropical
lands supports multiple ecosystem services and
buffers uncertainties
Thomas Knoke1, Carola Paul1, Patrick Hildebrandt2, Baltazar Calvas1,2, Luz Maria Castro1,3, Fabian Härtl1,

Martin Döllerer1, Ute Hamer4, David Windhorst5, Yolanda F. Wiersma6, Giulia F. Curatola Fernández 7,

Wolfgang A. Obermeier7, Julia Adams8, Lutz Breuer5, Reinhard Mosandl2, Erwin Beck8, Michael Weber2,

Bernd Stimm2, Wolfgang Haber9, Christine Fürst10 & Jörg Bendix7

High landscape diversity is assumed to increase the number and level of ecosystem services.

However, the interactions between ecosystem service provision, disturbance and landscape

composition are poorly understood. Here we present a novel approach to include uncertainty

in the optimization of land allocation for improving the provision of multiple ecosystem

services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including

two types of both afforestation and pasture rehabilitation, together with a succession option.

Our results show that high compositional landscape diversity supports multiple ecosystem

services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work

shows that active integration of uncertainty is only important when optimizing single or highly

correlated ecosystem services and that the multifunction effect on landscape diversity is

stronger than the uncertainty effect. This is an important insight to support a land-use

planning based on ecosystem services.
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T
he compositional diversity of a landscape has crucial
consequences for the level and stability of ecosystem
services. Compositional diversity can be quantified by

different landscape metrics (including familiar indices such
as Shannon’s diversity1) that account for the number
and proportions of land-use/cover types2. Ecosystem processes
and functions are less adversely affected by disturbance when
landscapes have high compositional diversity1,3. Diversifying crop
composition on farms4,5 and tree species in forests6 can also
increase levels of multiple ecosystem services. Crop diversification
furthermore protects farmers against economic uncertainties and
market shocks7–10. Consequently, it is important to consider
how to incorporate landscape diversification in initiatives to
rehabilitate the abandoned agricultural lands.

Abandoned agricultural lands are abundant worldwide with an
estimated extent between 385 and 472 million hectare (ref. 11).
Rehabilitation of these lands means re-establishing productive
functions of the ecosystem and often includes reintroducing
some of the original flora and fauna12. Rehabilitation can
mitigate the loss of tropical forests, because it allows agricultural
or forestry production to resume on abandoned lands, reducing the
need to expand into natural forest13,14. However, local efforts to
rehabilitate or restore abandoned lands often focus only on single,
promising land-use/cover types, particularly afforestation, and
disregard options for diversification. This may lead to unfavourable
outcomes. For example, Derak and Cortina15 have shown that
concentrating on a single option only does not necessarily improve
the whole suite of ecosystem services. Rehabilitation initiatives that
aim to create landscapes with high compositional diversity could
be a better alternative.

Despite empirical evidence supporting the advantages of high
landscape diversity, the mechanisms behind land allocation, the
resulting multiple ecosystem services and various dimensions
of uncertainty are not yet well understood. For example, we do
not know the exact levels of current or future ecosystem services,
and should therefore consider possible variations in the
expected levels of these services. For systematic land-use
planning, an improved understanding of how the uncertainties
of ecosystem services, on one hand, and the demand for multiple
ecosystem services, on the other hand, influence the ‘optimal’
allocation of land is necessary. For example, it has been shown
that optimized land allocation can mitigate trade-offs between
multiple services16.

Here we adopt a new approach based on uncertainty spaces
for dealing with uncertainties/disturbances when optimizing the
allocation of land to alternative land-use/cover options17. We
combine this approach with multiobjective optimization18–23.
This not only helps to address multiple desired ecosystem
services, but also accounts for the often unclear or unknown
preferences of current and future generations24. Our study defines
the uncertainty of ecosystem services as possible negative or
positive deviations from the expected levels (that is, disturbance
from these levels), when such services are quantified by
measurable associated variables (indicators). Deviations may
occur for various reasons, such as measuring, sampling or
model prediction errors, or because of unanticipated future
environmental change, unpredictable market development or
unexpected damage by calamities25.

Our optimization is developed to support the rehabilitation of
abandoned agricultural lands in Ecuador. It considers the option
of leaving pastures abandoned (as natural succession areas)
plus four active options for rehabilitation: afforestation either
with the native Alnus acuminata or the exotic Pinus patula, and
repasturization (re-establishing pastures) either with subsequent
low-input or intense management. We structure our study
around two aspects: (1) the impact of multiple ecosystem services

on optimal land allocation (multifunction effect); and (2) the
impact of increasing levels of possible deviation from recorded/
modelled indicators on the optimal allocation of land
(uncertainty effect). With respect to the multifunction effect, we
expect that the provision of multiple ecosystem services
(represented by ecosystem service indicators) can be improved
only by considering many land-use/cover types and not a single
one. Thus, the compositional landscape diversity should increase
with the number of indicators considered. Integrating possible
deviations from the initial indicators (uncertainty effect) into the
optimization will support high landscape diversity as well,
because deviations will be different for several land-use/cover
types. Consequently, we expect both aspects to drive landscape
composition in the same direction (Fig. 1), meaning that
landscape diversity will increase as more ecosystem services are
considered and with growing uncertainty.

Throughout this paper we use the term ‘ecosystem services’ in
a broader sense, defined as all ecosystem aspects used actively or
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Figure 1 | Schematic overview of theoretically expected effects.

(a) Possible impact of multiple ecosystem service indicators, and

(b) possible impact of indicator uncertainty on the allocation of land

proportions. In a, landscape composition depends on the actual indicators

selected, which is often subject to some randomness but also to pragmatic

aspects, such as availability. Using only a few indicators may lead to

relatively homogenous landscapes, because improved levels of a small

number of indicators can be achieved by single land-cover types.

Depending on the indicators chosen, landscape composition may change

completely (for example, repetition #3 and #7 for few indicators). However,

as more ecosystem service indicators are considered, more diversified

landscape compositions may occur to address the demand for multiple

ecosystem services. In b, only one or a few land-cover types may dominate

when uncertainty is excluded from the optimization, which may be those

with good performance for several indicators. With increasing uncertainty

the landscape may tend towards greater diversification to buffer the

uncertainties of single land-cover options.
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passively to support human well-being26. Depending on the
purpose, these ecosystem aspects can be classified as ecosystem
processes, functions, services, benefits or values27,28. Our paper
distinguishes between two types of ecosystem service indicators,
namely ‘ecological’ and ‘socioeconomic’ indicators14. The
ecological indicators are associated with carbon relationships,
climatic or hydrological regulation, and soil properties. They
describe ecosystem processes or functions, and influence
the suitability of the site for, and sustainability of, different
land-use/cover types. For instance, biomass production is a
prerequisite for subsequent provision of food, fodder or timber as
a service. In contrast, socioeconomic indicators address the more
direct benefits for farmers, such as economic return (quantified as
net present value of net revenues), payback periods (time until
invested money is received back) or the general acceptance of the
rehabilitation options by farmers. To describe the results we will
mainly refer to land-cover rather than land-use types, because
unmanaged areas left abandoned may play an important role in
new concepts of land allocation. Finally, we will focus on
the optimization of the diversity of land-cover types
(compositional complexity), and exclude the impact of
landscape configuration.

Our results show that high landscape compositional diversity is
realized when optimization aims to improve levels of multiple
ecosystem services, even when ignoring uncertainties.
Consequently, the aim of providing multiple ecosystem services
is the major driver of landscape diversity, rather than
the uncertainties involved. However, this is only true when the
indicators used are uncorrelated. Considering highly correlated
indicators leads to homogeneous landscapes, dominated by

afforestation. Such landscapes do not buffer against disturbance.
Thus, when indicators are correlated, integrating uncertainties
into the optimization is essential to avoid unfavourable results
under perturbations. Such consideration of uncertainties leads to
converging landscape composition, irrespective of the degree of
correlation between indicators.

Results
Multifunction effect. An extensive set of 22 indicators covering
all categories of ecosystem services as defined by the Millennium
Ecosystem Assessment29 forms the basis for our optimization.
Indicators are associated with supporting (biomass production
and soil quality) and regulating functions (carbon, climate
and hydrology), as well as with provisioning services (timber
and food) and social benefits (acceptance by the local people)
(Table 1, for details see Knoke et al.14 and Supplementary
Methods).

Our optimization considers a range of indicator levels under
uncertainty through possible deviations from the initial
indicator values, as depicted in Fig. 2. The optimization
approach (Methods) allocates land to rehabilitation options with
the aim to minimize low performance of landscape level
indicators (Fig. 3). This optimization increases the levels
of multiple ecosystem service indicators, particularly those
with the lowest original levels (Fig. 3), and leads to a quite
complex optimal landscape composition. The resulting structure
of the anthropogenic landscape mosaic (hereafter called a
‘landscape portfolio’) is 24% abandoned areas, 21% Alnus, 25%
Pinus, 10% low-input pastures and 20% intense pastures, given a

Table 1 | Considered indicators and their uncertainties, adopted from Knoke et al.14 (to quantify possible deviations from
recorded indicator levels we use the s.e.m.li, for each land-cover type, l, and indicator, i, given in parentheses).

Indicator values

Indicator group Indicator Unit Abandoned Alnus plantation Pinus plantation Low-input pasture Intense pasture

Carbon relationships Biomass production mg ha� 1 per
year

31.8 (±4.8) 7.7 (±0.6) 8.9 (±0.4) 26.5 (±4.4) 50.0 (±2.3)

Carbon in planta Mg ha� 1 33.0 (±2.9) 24.5 (±2.3) 29.6 (±1.4) 12.5 (±1.2) 25.8 (±3.4)
Soil organic carbon Mg ha� 1 87.3 (±5.3) 91.7 (±6.8) 93.5 (±4.6) 91.8 (±4.9) 96.3 (±5.1)

Climate regulation Evapotranspiration mm per year 928 (±3.8) 1,597 (±4.1) 1,410 (±1.1) 1,186 (±5.8) 1,167 (±5.1)
Momentum flux kgm� 1 s� 2 0.018 (±0.00028) 0.285 (±0.0156) 0.294 (±0.00038) 0.023 (±0.00003) 0.026 (±0.0004)

Hydrological regulation Overland flow mm per year 75 (±3.7) 38 (±0.8) 29 (±1.5) 75 (±2.8) 77 (±2.9)
Area-specific
discharge

mm per year 927 (±6.9) 283 (±4.0) 471 (±2.7) 677 (±7.0) 695 (±6.1)

Soil quality pH (delog used for
optimization)

4.50 (±0.09) 4.30 (±0.04) 3.60 (±0.13) 4.50 (±0.18) 4.10 (±0.09)

Soil organic carbon
(SOC)

% 10 (±0.2) 8 (±0.7) 7 (±0.8) 11 (±0.6) 12 (±0.4)

Base saturation % 12 (±2.6) 30 (±1.8) 6 (±1.2) 17 (±1.3) 12 (±1.3)
Carbon in microbial
biomass

mg kg� 1 1,088 (±51) 1,065 (±80) 576 (±75) 1,065 (±102) 1,359 (±65)

Carbon
mineralization

g CO2–C per
kg SOC

4 (±0.18) 3 (±0.13) 4 (±0.49) 4 (±0.31) 3 (±0.27)

Nitrogen
mineralization

mg N per kg
per day

2 (±0.27) 3 (±0.49) 2 (±0.31) 1 (±0.22) 3 (±0.12)

PO4–Phosphor mg kg� 1 1 (±0.09) 1 (±0.22) 6 (±1.21) 1 (±0.13) 6 (±1.79)

Net present value At 5% discount rate US$ per ha 0 (±0) 1,435 (±649) 1,322 (±586) 127 (±146) 1,060 (±234)
At 8% discount rate 0 (±0) 619 (±394) 561 (±373) -156 (±129) 485 (±234)

Payback period At 5% discount rate years 0 (±0) 16 (±3) 16 (±3) 18 (±6) 10 (±2)
At 8% discount rate 0 (±0) 16 (±4) 16 (±4) 32 (±4) 13 (±4)

Preference Saraguros With subsidy Answers with
preference
rank 1 or 2

4 (±2) 14 (±3) 12 (±3) 5 (±2) 4 (±2)

Without subsidy 0 (±0) 19 (±3) 9 (±3) 3 (±2) 8 (±3)

Preference Mestizos With subsidy 5 (±2) 19 (±4) 15 (±3) 12 (±3) 12 (±3)
Without subsidy 0 (±0) 16 (±3) 17 (±4) 14 (±3) 10 (±3)
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level of uncertainty of fU¼ 2 (meaning that the considered
deviation from the recorded/modelled indicator is twice as large
as its s.e.m., see Methods). Shannon’s diversity of land-cover
types is 1.57 for this landscape portfolio, which is close to the
theoretical maximum diversity of 1.61. This result underlines a
strong multifunction effect on landscape complexity.

Random experiments drawing various combinations of 4, 8, 12
and 16 indicators out of 22 (with 50% ecological and 50%
socioeconomic indicators in each experiment) show the impact of
the number of indicators considered (Fig. 4). The obtained
composition of land-cover types is most variable and thus volatile
for a small number of four randomly selected indicators, but it
stabilizes when integrating 8–12 indicators into the optimization.
For example, with various combinations of only eight indicators
all five land-cover types are represented in almost all repetitions.

Interestingly, when considering eight indicators or more the
land allocation is hardly influenced by the number of indicators
included. Only the optimization with four indicators results in
less abandoned lands (11%) and greater proportions of Alnus
(30%) and intense pasture (25%) compared with the optimization
based on more indicators. However, even with only four
indicators we obtain quite diversified, albeit highly variable,
landscapes. In contrast to our expectation (Fig. 1a), each of the 10
random repetitions includes 4 or 5 land-cover types. This is in
part an interaction effect due to the uncertainty considered, which

also supports landscape diversification. When excluding
uncertainty, the landscape portfolios still comprise always two
or three land-cover types. This pattern and particularly the
stability of the average landscape composition for optimizations
with eight or more indicators, is a result of our allocation
approach. It considers each landscape-level indicator separately,
while requiring the highest possible minimum level for each
indicator. Consequently, the landscape-level indicators are not
averaged or summed; this means that averaging effects among the
indicators do not affect the interplay between indicators and
landscape composition. Our obtained Shannon diversities for the
average landscape composition are more or less constant for eight
indicators and more (varying from 1.54 to 1.55), indicating no
change in landscape diversity with increasing numbers of
indicators included in the optimization. In conclusion, merely
increasing the number of indicators does not lead to system-
atically altered landscape portfolios, when considering eight or
more indicators. However, increasing the number of indicators
reduces the variability of the resulting landscape composition.

The optimization based on eight or more indicators comes
with certain trade-offs. It leads to a moderate decrease in the
achieved average performance for aggregated indicators, when
compared with an optimization with four indicators (Table 2).
Considering eight or more indicators helps to achieve a balanced
provision of multiple uncertain ecosystem services with improved
minimum levels for multiple ecosystem indicators. Compared
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Figure 2 | Example of a non-stochastic consideration of possible

deviations. We refer to one of the economic indicators (net present value

of net revenues, NPV, 5% discount rate) for two rehabilitation options,

Alnus afforestation and intense pasture. Deviations for two rehabilitation

options form an uncertainty area (see Knoke et al.17), while the actual

investigation considers five options, which form five-dimensional

uncertainty spaces. Starting from the recorded/modelled values (magenta

diamond), box uncertainty spaces are constructed by means of adding/

subtracting possible deviations (proportional to the measured s.e.m.) from

the recorded indicator values. We enlarged the size of the boxes to consider

different levels of uncertainty, fU, from 0.5 to 3.0 times the s.e.m.

Minimizing the distance between the level of the indicator actually achieved

and the maximum (100% of potential) level for that indicator (Fig. 3)

considers all uncertainty combinations of indicator values included in the

uncertainty boxes. Addressing the parameter combinations at the corner

points of the rectangular boxes ensures all uncertainty combinations are

considered. These combinations form the discrete uncertainty scenarios

considered in equation (1) (see Methods).
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Figure 3 | Schematic description illustrating improvement of achieved

minimum levels of indicators. The graph shows the min–max normalized

(that is, indexed) achievement levels (y axis) for four potential indicators

(x axis). The indexed indicators are scaled from zero (least desirable

indicator value) to 100% (most desirable value). The four indicators given as

examples represent the pH (indicator 1), soil organic carbon (indicator 2),

base saturation (indicator 3) and carbon in microbial biomass (indicator 4).

Each point represents the indicator achievement level for the considered

uncertainty scenarios (25¼ 32) for each indicator. Results for two land-use

allocation scenarios are depicted: grey circles represent the indicator values

under the scenario that all of the land is allocated to abandoned land. For

indicator number 3, abandoned land would give the least desirable indicator

value of zero for some of the uncertainty scenarios. Hence, the maximum

distance to the most desirable value is 100%. Pink diamonds represent the

indicator achievement levels under the ‘optimized’ scenario, consisting of a

mixture of various land-cover types, which buffers against uncertainty. In this

scenario, land is allocated to the five land-cover types (four rehabilitation

options plus the ‘abandoned’ category) in a way that minimizes the

maximum distance to the 100% achievement level. Here landscape-level

indicators consist of the sum of the indicators recorded for the individual

land-cover types (reported in Table 1), which have been multiplied with the

area fraction allocated to the corresponding land-cover type.
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with optimization based on four indicators, considering eight or
more indicators increases the proportion of land allocated to
abandoned areas from 11 to 24%. This reduces the proportion of
Alnus from 30% to 21% and that of intense pasture from 25 to
21%. As a consequence, the average indicators for aggregated
climate and hydrological regulation, net present value, and
preferences decrease, while payback periods improve and carbon
relations and soil quality remain constant.

Uncertainty effect. We consider disturbance for each ecosystem
service indicator by incorporating possible positive or
negative deviations from recorded/modelled indicator values into
the optimization (Fig. 2). In addition, we incorporate a
large range of ecosystem indicators without any weighting
or opportunity of compensation among them to acknowledge
the prevailing uncertainty of human preferences24, which
are often mutable, particularly over long timeframes30

(preferring specific services is analysed in ‘Sensitivity
considerations’).

In the investigations above, the optimized landscape portfolio
only considers one level of uncertainty (fU¼ 2), whereas here we
vary the level of uncertainty. We have seen that a landscape that
simultaneously increases multiple indicators consists of a quite
diversified, relatively balanced landscape portfolio. Even when
excluding uncertainty for each indicator, a landscape optimized to
provide a balanced bundle of ecosystem services is already
diversified (Fig. 5a, uncertainty level fU¼ 0), with only low-input
pastures excluded. This diversified landscape provides an implicit
and effective buffer against uncertainty.

Increasing indicator uncertainty leads to only slight changes in
land-cover patterns, if both socioeconomic and ecological
indicators are considered. For example, at a very high uncertainty
level of fU¼ 3, the portfolio consists of 19% abandoned areas,
23% Alnus, 24% Pinus, 13% low-input pastures and 21% intense
pastures (Fig. 5a). This landscape is slightly more diversified
compared with the landscape portfolio obtained for lower levels
of uncertainty. Thus, the simulated diversity of the rehabilitated

abandoned lands increases with rising levels of uncertainty.
However, this uncertainty effect is much less pronounced than
expected (Fig. 1b).

The impact of the uncertainty effect on landscape composition
thus appears to be less important compared with the
multifunction effect. If the considered land-cover types all
provide different services, then high compositional diversity
appears to be an intuitive result when demanding multiple
services. For example, the afforestation options will deliver
favourable climatic regulation services, while intense pasture
offers relatively low payback periods.

However, high landscape diversification to increase multiple
ecosystem services is only a robust result when the ecosystem
service indicators used for optimization are uncorrelated. An
optimization example with only socioeconomic indicators shows
the consequences of using correlated indicators (socioeconomic
indicators show high correlation, Supplementary Table 1). When
uncertainty is excluded in this example, rehabilitation only
considers two options (Fig. 5b): Alnus afforestation and leaving
area abandoned. This tendency towards homogenous landscapes
is even more pronounced when we systematically combine the
highly correlated indicators (Supplementary Fig. 1).

When using correlated indicators, it is mainly the uncertainty
that drives the diversification of landscape portfolios. The
optimization results obtained therefore resemble those of
single-objective optimization in many cases (Supplementary
Figs 2–9). However, general single-objective optimization
may also lead to a single land-cover type, even if uncertainty is
considered; this is the case for 6 of the 22 indicators.
In conclusion, when indicators are highly correlated or single
objectives are used, it is necessary to consider uncertainties, to
avoid reduced landscape diversity, which will not buffer against
uncertainty.

In contrast, the optimization with uncorrelated ecological
indicators leads to relatively complex landscape portfolios very
similar to those obtained from optimizations using all indicators
(Fig. 5c). Moreover, the resulting landscape portfolios do
not change greatly with the additional consideration of the
socioeconomic indicators in our study.

As uncertainty increases, the optimized land proportions
converge to a maximally diversified landscape portfolio, as shown
by the Bray–Curtis measure (Fig. 6).

The increasingly equal allocation of land to land-cover types
with growing uncertainties is a result of a statistical averaging
effect. Our landscape-level indicators are obtained as averages
formed by the area-weighted indicator levels of the individual
options. Under uncertainty, the indicators of various options
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Figure 4 | Impact of the number of indicators considered (multifunction

effect). Obtained composition of the landscape portfolios is relatively

stable when using eight indicators or more. On the basis of four randomly

selected indicators the average landscape composition is slightly less

complex compared with that of landscapes that result from considering

eight or more indicators. Random experiments with 10 repetitions with

different indicator combinations for each size of the indicator set

(4, 8, 12, and 16 indicators, all optimizations with uncertainty level fU¼ 2.0)

were carried out, with half of the indicators drawn from the ecological and

half from the socioeconomic set. H stands for Shannon’s index computed

for the average landscape composition.

Table 2 | Changes in aggregated indicators when including
multiple ecosystem services: Achieved average min–max
normalized indicators after optimization with increasing
numbers of indicators.

Achieved average min–max normalized indicators in % for
optimization with n indicators

Indicator group according to Table 1 n¼4 8 12 16 Change

Carbon relationships 55 55 55 55 Constant
Climate regulation 59 50 48 48 Decrease
Hydrological regulation 56 48 46 47 Decrease
Soil quality 53 53 53 53 Constant
Net present value 76 66 64 64 Decrease
Payback period 42 48 50 50 Increase
Preference Saraguros 53 45 42 42 Decrease
Preference Mestizos 70 61 58 59 Decrease
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often show different deviations from their expected values. This
leads to reduced variability when averaging the indicators for
single services among land-cover types and, thus, to a buffering
effect of the sometimes high uncertainties of the indicator values
for the individual land-cover options. Under much enlarged
uncertainty spaces, the effect of buffering uncertainties is
ultimately supported by an increasingly equal allocation of land
to land-cover types. In conclusion, while the high landscape
diversity is required to improve multiple uncorrelated ecosystem
services, high landscape diversity may also be desirable to achieve
statistical averaging effects to reduce uncertainty.

Indicator variation and achieved levels. The variability of indi-
cator achievements is greatly reduced by the complex landscape
portfolio resulting from multiple-objective optimization. This
becomes obvious when comparing the indicator variability from
multiple-objective optimization to that for simulated landscapes
with only one land-cover type for rehabilitating the abandoned
lands; see Fig. 7, which compares the diverse landscape portfolio
with complete afforestation with Alnus or leaving all areas aban-
doned. For example, complete Alnus afforestation yields only 3
(out of 20 considered) years with positive net revenues14, resulting
from two thinning operations and one final harvest. Thus, the
temporal diversification of annual market and production risks
with a homogenous Alnus land cover is low, leading to a high
dispersion of net present values and payback periods. In the
diversified landscape portfolio, this variation is effectively buffered
(Fig. 7), because the pasture portfolio components are providing
positive net revenues almost every year. They show much less and
different patterns of variation of economic indicators compared
with Alnus. In addition to buffering the variability of the economic
consequences, the multiple-objective landscape portfolio creates a
balanced and much less variable achievement of all other
ecosystem services considered.

For an uncertainty level of fu¼ 2 (Fig. 7), the worst
underperformance obtained for the diversified landscape
portfolio (that is, the maximum distance to the 100%
achievement level) is still 73%. This guarantees an achievement
level of 27% for each indicator, even under very pessimistic
uncertainty scenarios. In contrast, for landscapes with single
land-cover types, indicator levels of 0% are common under
pessimistic uncertainty scenarios. Median achievements of
indicators range from 37 to 65% for the multiple-objective
landscape portfolio, while the range of median achievements is
0–100% for the single land-cover types. For examples derived
under alternative uncertainty levels see Supplementary Fig. 10.

The changes in average indicator performance are small for
adapting landscape portfolios to increasing uncertainty through
our optimization approach (Table 3); average indicator levels
decrease by 2 to 3 percentage points when considering high
uncertainty levels. Only average payback periods increase notably,
which reflects the growing proportion of managed lands under
rising uncertainties, leading to reductions in achievement levels of
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Figure 5 | Impact of the uncertainty effect. The proportions of land

allocated to the land-cover types do not heavily depend on the modelled

level of uncertainty when (a) all indicators or (c) only ecological indicators

are used. Uncertainty has a greater impact on landscape composition when

(b) only the socioeconomic indicators are considered (indicators that are

often correlated). Uncertainty level refers to multiples of the s.e.m. used to

increase the size of the uncertainty boxes, as displayed in Fig. 2. Subscripts

for indicator value, R: l for land-use option, i for indicator, and u for

uncertainty deviation from recorded indicator. s.e.m.li of R for land-use

options, l, and indicators, i.
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11 to 17 percentage points. Higher proportions of active
rehabilitation options are needed under increasing
uncertainty to buffer the considerable economic uncertainties
mainly related to the afforestation options. An example for the
change of the absolute indicators is contained in Supplementary
Table 2.

Sensitivity considerations. The results obtained from
optimizations are quite robust under altered assumptions. For
example, excluding specific groups of indicators does not usually
have a big influence on the obtained landscape portfolios
(Supplementary Figs 11–14), at least when uncertainty is part of
the optimization. The only important influence was among the
socioeconomic indicators, where the payback periods have a
substantial impact on land allocation (Supplementary Fig. 13B).
Disregarding the time required for recovering investments would
completely remove the abandoned succession areas from the
optimized land-use portfolio. Payback periods are important
indicators, because access to capital is usually limited for farmers
in our study area31.

The expected achievement levels obtained for single land-cover
options influence their inclusion in or exclusion from
the optimized landscape portfolios. For example, reducing the
expected indicator levels for single land-cover options, while
keeping those for the other options constant, leads to the
exclusion of Pinus (uncertainty level fu¼ 0) or low-input pasture
(uncertainty levels fu¼ 1 and fu¼ 2, see Supplementary Fig. 15).
However, when the uncertainty level is higher (fu¼ 3),
only the shares of the tested options are reduced, with all options
kept in the portfolio. This illustrates a trade-off between the size
of the uncertainty space and the impact of the original indicator
levels. Integrating very large uncertainties may lead to the
inclusion of each land-cover type into the landscape portfolio,
regardless of the initial level of expected achievement. This result
is intuitive, because a very large uncertainty about the
performance of all options does not support strong preference
for single options.
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Figure 7 | Normalized landscape scale indicators. Whiskers: minima and maxima, boxes formed by quartiles comprising the median. Multiple-objective

optimization is compared with single land-use options for an uncertainty level of fu¼ 2.

Table 3 | Changes for adapting to uncertainty: achieved
average min–max normalized indicators after optimization
with various indicator sets for increasing levels of
uncertainty (changes of ±2% were denoted as ‘constant’).

Achieved average min–max normalized indicators in % for uncertainty
level fu

Optimization
with

Indicator group
according to Table 1

fu¼0 1 2 3 Change

All indicators Carbon relationships 57 54 54 53 Decrease
Climate regulation 49 46 48 50 Constant
Hydrological
regulation

47 45 46 49 Constant

Soil quality 56 55 52 52 Decrease
Net present value 69 62 62 64 Decrease
Payback period 55 54 48 44 Decrease
Preference Saraguros 46 43 42 45 Constant
Preference Mestizos 58 56 59 63 Increase

Socioeconomic Carbon relationships 44 54 55 52 Increase
indicators Climate regulation 53 49 49 49 Decrease

Hydrological
regulation

50 48 48 47 Decrease

Soil quality 55 54 53 53 Constant
Net present value 59 65 66 63 Increase
Payback period 62 57 51 45 Decrease
Preference Saraguros 54 45 44 44 Decrease
Preference Mestizos 53 55 59 62 Increase

Ecological Carbon relationships 57 54 54 54 Decrease
indicators Climate regulation 49 49 46 48 Constant

Hydrological
regulation

47 47 45 46 Constant

Soil quality 56 54 53 52 Decrease
Net present value 69 65 61 62 Decrease
Payback period 55 51 48 44 Decrease
Preference Saraguros 46 45 41 41 Decrease
Preference Mestizos 58 59 59 62 Increase
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Finally, it may be argued that rarely are all ecosystem services
equally important, because any discussion of indicators leads
to debates about weights and preferences32. To simulate an
increased preference for specific ecosystem services, we allocated
unequal weights to the specific groups of indicators and their
differences to the maximum achievement level (Supplementary
Fig. 16). From this analysis, it becomes clear that preferring
specific ecosystem services leads to increasingly homogenous
landscape portfolios in many cases, often resulting in only one
dominating land-cover type, at least when ignoring uncertainty
(Supplementary Fig. 16B). Finally, if we consider uncertainties
(Supplementary Fig. 16A), then the optimization suggests at least
some landscape diversification, even when using very high
weights for specific groups of ecosystem services. The only
exception is for the indicator payback periods, for which a greatly
increased preference always leads to abandoned lands not being
rehabilitated (Supplementary Fig. 16).

Decision makers first have to decide whether a limited number
(possibly only one) or multiple ecosystem services are of interest,
and then how to weight the selected ecosystem services.
Our approach can address both perspectives, with and
without weighting, but we find it most convincing to
consider the improvement of multiple desired ecosystem
services simultaneously, which is most likely to best support a
sustainable provisioning of ecosystem services at the landscape
scale.

Discussion
Our work sheds new light on the interplay of multiple ecosystem
services, their uncertainties and land allocation. It shows that
diverse landscape composition is advantageous from several
perspectives. Considering multiple ecosystem services
(multifunction effect) and integrating disturbance (uncertainty
effect) both support highly diverse landscapes. However, the
multifunction effect dominates compositional landscape diversity,
even if only subsets of indicators are considered, as long
as the indicators used are uncorrelated. If each land-cover
type delivers different services, such landscape diversification
appears intuitive.

Landscape diversification has been recommended elsewhere to
deliver multiple services33,34 and more recently, ‘balanced’
concepts have been suggested as a new paradigm for
land-use35. The compositional diversity necessary to improve
multiple services provides an implicit buffer against uncertainty
so that considering additional uncertainty does not greatly change
the landscape diversity. While the number of service indicators
has only a minor impact on landscape composition (when
considering at least eight indicators), an increasing size of the
uncertainty spaces leads to increasingly equal land allocation to
the land-cover types. This is due to statistical averaging
effects evoked by diverse landscapes, a phenomenon called the
‘portfolio’ effect36. However, the additional effect of uncertainty
on landscape composition is small, when landscape
diversification is already triggered by the multifunction effect.
In light of these results, it may be justified to only consider
multiple ecosystem services in land-use/cover planning, if several
indicators are uncorrelated. Careful consideration is advisable,
however, if indicators are correlated, because the resulting
homogenized landscapes do not provide any buffer against
uncertainty.

As an important result of our study, high compositional
landscape diversity can reduce the often large volatility of
ecosystem service indicators for individual options. While our
set of indicators does not address biological diversity, our results
show that complex landscapes protect a large range of ecosystem

services against the adverse effects of uncertainty, a result
which supports policies to prevent landscape homogenization1.
However, our optimizations show that optimally diversified
landscape portfolios that provide multiple ecosystem services are
not necessarily the by-product of single-objective economic land-
use decisions by risk-averse farmers. Furthermore, our research
does not support a win–win scenario between optimization of
ecological and socioeconomic indicators (Fig. 5). In addition,
divergent land allocation under uncertainty becomes clear, if we
consider results obtained from optimizing only single economic
objectives (cf Supplementary Figs 6 and 7). Risk-averse farmers
will probably diversify their land-uses and provide substantially
more ecosystem services to society, compared with risk-neutral
farmers, but their objective to diversify economic risks is likely to
lead to different patterns of land allocation. The economically
diversified landscapes may largely exclude succession areas
(areas left abandoned; Supplementary Fig. 6), which also
provide important ecosystem services and biodiversity37.
Since economically optimal diversification is driven by the
desire to reduce uncertainties, access to insurance or specific
agricultural policies to reduce uncertainties will counteract
diversification8,38,39. Consequently, the levels of ecosystem
services will decrease with the reduced economic uncertainties
for farming. In summary, while our study does not support a
general win–win between optimizations under either ecological
or socioeconomic objectives, it appears notable that the
optimization results converge, if they address the uncertainties
of several ecosystem service indicators. Therefore, we may
minimize trade-offs, if both ecological and socioeconomic
perspectives consider uncertainties.

It remains a complex scientific task to integrate ecosystem
services into landscape management40, particularly if uncer-
tainties about ecosystem services prevail. Although promising
analytical approaches that use restoration scenarios exist41, such
as regional land-use scenarios42,43 or national level land-use
optimization based on economic valuation of ecosystem
services44, a combination with programming-based multiple-
objective optimization at the landscape scale is still largely
lacking45 (see Estrella et al.19 and Chang et al.46 for examples).
Moreover, approaches to consider uncertainties of multiple
ecosystem services are rare.

Our approach to uncertainty is a type of robust optimization47,
which secures improved levels for multiple ecosystem services
based on sets of possible indicator values, derived from
uncertainty spaces. However, we have not directly addressed
the opportunity to adapt the landscape portfolio according to
changes in the ecosystem indicators, for example under changing
environmental or market conditions. More adaptive approaches
to uncertainty would incorporate the learning about the
effectiveness of the different options for achieving different
objectives into the planning solution itself48. Adaptive governance
assumes that landscapes need to be understood and governed as
complex social–ecological systems rather than as ecosystems
alone49. Mechanistic modelling approaches, as suggested by
our study, have a high potential to inform an iterative
decision-making process as outlined by Polasky et al.50. In
response to temporal changes in the expected ecosystem service
levels for the considered options, optimizations can be rerun and
revised landscape portfolios may be offered. However, adaptation
options may be limited from a financial point of view, given the
quite long payback periods (10 to 32 years). A rapid and early
change in the landscape portfolio will thus often only be justified
when severe changes are expected or completely new and
deviating knowledge arises. However, a diversified portfolio
offers more convenient options for adaptation compared to a
more specialized landscape.
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Further approaches that have been proposed to manage
uncertainty in ecosystems are scenario planning51,52 and
resilience assessment4,53. The success of using scenario planning
for decisions under uncertainty strongly depends on the range of
expert opinions, stakeholder objectives and hence the identified
scenarios. Scenario planning does not assign probabilities to
different alternative landscape pathways and uncertainty is
usually reflected by the selected scenarios themselves54. Some
authors couple scenario analysis with stochastic simulations to
test the robustness of political strategies under changing levels
of uncertainty55–57. Resilience thinking is strongly interconnected
with adaptive management and highlights the importance
of considering the interdependencies of social and biophysical
systems. Fischer et al.58 have encouraged embedding
optimization approaches into a resilience thinking framework.
In line with this, our robust multiobjective optimization can offer
a richer understanding of the complex dynamics of rehabilitation
and landscape planning, which can be used for and expanded by
participatory and interdisciplinary approaches adopted in
scenario planning and resilience thinking.

Alternatives to indicator based multiple-objective optimization
under uncertainty include spatially explicit economic optimiza-
tion based on monetary value coefficients. For example, Bateman
et al.44 offer important advances using this approach and
conclude that targeted planning and optimization of both
ecosystem services and agricultural market values is needed.
Using normalized ecosystem service indicators for different
land-use options, instead of assessing changes in their monetary
value, has significant advantages for safeguarding ecosystem
services. In this respect our model avoids the degradation of
important services. For instance, diminishing or even losing a
service, such as water filtration and retention, because another
service achieves higher economic value coefficients, can have
far-reaching consequences for human wellbeing that might be
difficult to enumerate in monetary terms.

There remain some challenges for optimizing multiple
ecosystem services at the landscape scale. For example, there will
always be a debate about the importance of indicators32,
including which indicators are essential and which are not. In
our study region, soil erosion can be an important aspect of land
management, but is not yet directly addressed by our set of
indicators. However, given the large number of indicators used
and the robustness of our results, we do not believe that more
indicators would substantially change the results (Fig. 4).
Moreover, considering uncertainty of ecosystem indicators
effectively protects against unbalanced decision-making, should
we have evaluated one option too positively. For our study, one
could argue that we may have been too optimistic in evaluating
the impact of afforestation with Pinus on soil quality and carbon
stocks, compared, for example, with results obtained by Hall
et al.59 or Henry et al.60. However, Pinus never dominates our
land-use portfolios, so we may conclude that our approach
provides a good buffer against possible bias.

One aspect excluded from our study is the impact of landscape
configuration on ecosystem services and optimization of
landscape diversity. Configurational landscape heterogeneity
(for example, size and arrangement of patches) was less
important as a filter of diversity for arthropod communities
compared with compositional landscape heterogeneity1.
Considering landscape configuration may be quite important to
cover spill-over effects61 as well as synergistic or antagonistic
effects between mixed crops (see Neuner et al.62 for the case
of mixed-species forests). However, the balanced composition of
land-cover types that we derived leaves enough space to optimize
landscape configuration63. For example, our intense pasture
option may well be embedded into an advantageous landscape

configuration together with options that provide strong
regulating services, such as afforestation with native trees.
This can reduce adverse spill-over effects, for example, those
resulting from fertilizer use. Thus, possible impacts and feedback
of ecosystem services controlled by landscape configuration
on optimal landscape diversity forms a field for further future
research.

Our new optimization approach could inform the actual
land-use planning in our study region. Here abandoned pastures
cover 35% of the total pasture area64. Among the reasons for the
abandonment of these pastures is the invasion of weeds—mainly
tropical bracken. Bracken is resistant to fire—the most common
local tool to control weeds65. However, long-running experiments
show that these areas may actually be rehabilitated by
afforestation or repasturization14. The state of Ecuador has
enacted a national plan of forest restoration66, which identifies a
total area of 1,599,342 ha, mainly consisting of degraded/
abandoned pastures or other agricultural lands, as suitable
for restoration/rehabilitation. The national plan considers
priority areas for aspects such as the protection of water
resources, biodiversity or degraded sites inside protected areas.
The government has declared the restoration/rehabilitation of
300,000 ha as an official target and aims at restoring 500,000 ha in
total by 2017 (ref. 66). The objectives of restoration/rehabilitation
are included in developmental programmes on regional and local
scales67. However, their scope is limited to mainly afforestation
options or leaving areas abandoned, while whole-landscape
portfolios and their quantitative impacts on ecosystem services
are not considered.

The practice of landscape planning in Ecuador described above
may be improved by our optimization approach, which delivers
information on the land needed for several land-cover types in
the form of an optimized landscape composition for rehabilita-
tion areas63. Combined with rule sets to make the intended
distribution of land-cover types spatially explicit, priority zones
may be formed (Supplementary Fig. 17). Considering these
landscape zones may help to allocate payments or other
incentives to landowners to stimulate rehabilitation
(Supplementary Methods).

In conclusion, our study supports understanding of
mechanisms behind the complex interplay between multiple
ecosystem services, their uncertainties and the optimal allocation
of land. Moreover, the method we have developed allows for a
more differentiated consideration of positive externalities
incurred by risk-averse farmers through their desire to mitigate
future economic uncertainties. It ultimately provides strong
support for a more complex landscape composition, addressing
multiple and uncertain ecosystem services.

Methods
Data and land-cover options. This study builds on the indicators published in a
synthesis paper14, which summarizes the results of a multi-disciplinary research
initiative focused on ecosystem studies in southern Ecuador, since 1998. In that
paper, models parameterized with the field data served to obtain the results for
some ecosystem service indicators over a 20-year period assuming nearly constant
environmental conditions (Table 1). Other indicators were either measured directly
in the field or obtained from interviews (see Knoke et al.14 for details).
Supplementary Methods contain a justification of the indicators used.

We refer to the following land-cover options investigated in the context of
rehabilitation of abandoned tropical pastures: (I) to leave areas abandoned
(resulting in succession areas, referred to as ‘abandoned’); (II) afforestation with the
native tree species Alnus acuminata (Alnus); (III) the exotic Pinus patula (Pinus);
(IV) converting to low-input pasture with subsequent low-input management
(low-input pasture); or (V) converting to intense pasture with subsequent intense
management (intense pasture).

Uncertainty and the optimization of multiple services. Our new method starts
with integrating non-stochastic uncertainty sets (Fig. 2 and Knoke et al.17) for each
of the 22 indicators into the optimization. This allows for considering the
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uncertainty of ecosystem service indicators in a robust fashion (see Ben-Tal et al.47

for a comprehensive justification of robust optimization). For various sizes of these
uncertainty sets, we integrate all possible combinations of maximum optimistic and
pessimistic deviations for each indicator and land-cover type, resulting in 32
uncertainty scenarios for each indicator. By appropriately allocating proportions of
abandoned pasture lands, al, to five specific land-cover types, i, we then minimize
the difference between the (hypothetically) achievable indicator level (100%) and
the actually achieved level for each of the 22 ecosystem service indicators at the
landscape scale (Fig. 3). The ecosystem service indicators, Riu, are computed at a
landscape level as area-weighted averages19,46 based on the indicator values
achieved by the single land-cover options under each uncertainty scenario
(22 indicators by 32 uncertainty scenarios gives 704 scenarios altogether). During
the optimization process a set of indicator values, Rliu, for each single land-cover
option form our input parameters and the proportion of land allocated to each of
the five land-cover options form the variables to be optimized (decision variables).
The outcome is an optimum allocation of area proportions to the land-cover types
considered for rehabilitation. To summarize, we use a variant of goal
programming18,68, also referred to as compromise programming19,23,46, to
minimize non-achievement of maximum ecosystem service levels considering
indicator variation by means of inclusive uncertainty sets17.

To implement our method we impose one achievement function per indicator
and uncertainty scenario (Riu ¼

P
l2L Rliu � al), which controls the absolute

achievement level for each ecosystem service under each uncertainty deviation at the
landscape scale. That means that all uncertainty scenarios, covering various
combinations of optimistic and pessimistic parameters for each indicator and each
land-cover option, have their own achievement function. We represent uncertainty
by the standard error of the mean (s.e.m.li) in our data sets14 (Table 1). To integrate
uncertainty into the optimization, we refer to positive (optimistic) or negative
(pessimistic) deviations, ui, from the recorded indicator. Considering only two
land-cover options, the optimistic and pessimistic indicator levels form rectangular
uncertainty areas with four corner points (one for each uncertainty scenario,
see example in Fig. 2). The actual method, however, considers five-dimensional
uncertainty spaces with 32 corner points, to integrate optimistic and pessimistic
indicator levels in all possible combinations for all five land-cover options
(25¼ 32 uncertainty scenarios). To explore the impact of increasing uncertainty
on the resulting landscape structure, we sequentially increase the size of the
uncertainty spaces, as is schematically shown for the simple case of two land-cover
options in Fig. 2.

All landscape-level indicators obtained, Riu, have been scaled between zero
(least desirable) and 100% (most desirable) to form indexed values14,19,23,46,69,
piu. The scaling was achieved by taking the difference of each landscape-level
indicator value and the least desirable indicator value and dividing this difference
by the range of the indicator among the options considered (most desired minus
least desired, equation (1)). The resulting quotient multiplied by 100 gives the
relative position between the most and the least desired values of the indicator
achieved at the landscape scale. Finally, we imposed one unitary constraint, Du, on
each indicator, i, and uncertainty scenario, u. In total, we considered 704
constrained achievement functions for 22 indicators, each represented with 32
uncertainty scenarios. The constraints control the maximum distance to the highest
achievement level; we seek to minimize this distance to reduce underperformance
to lowest possible level. This distance depends on the allocation of land
proportions, al, to the five land-cover types. We minimized the tolerated distance
iteratively, by reducing Du, as long as none of the constraints were violated, to find
Du,min. Frontline Solvers V2015 (15.0.2.0) was used with the Standard Linear
Programming Engine to solve our constraint-based formulation of our problem.
We summarize the applied method as follows:

max O ¼
X

i2I;ui2Ui

piu

subject to

Du;min � 100� piu 8i 2 I 8ui 2 Ui

0 � Du;min � 100

uli ¼ � fU � s:e:m:li

if 0more is better0 :

piu ¼ Riu � min Rliuð Þ
dmax;min

� 100

if 0less is better0 :

piu ¼
max Rliuð Þ�Riu

dmax;min
� 100

Rliu ¼ Rli þ uli

Riu ¼
X

l2L
Rliu � al

X

l2L
al ¼1

al � 0

ð1Þ

with

O Objective function
piu Normalized indicator at landscape level as a percentage, scaled

between minimum and maximum
i, I Indicator, i, as a member of the set of indicators considered, I
uli, Ui Indicator deviation from the recorded indicator value and set of all

indicator deviations (uncertainty scenarios)
Du,min Minimized tolerated distance of a normalized indicator, piu, from

the maximum achievement level of 100%
fU Factor to determine the level of the uncertainty deviation

considered. fU¼ 0, 0.5, 0.75, y, 2.5, 2.75, 3.0
s.e.m.li s.e.m. for recorded indicator, i, and land-cover type, l
Riu Landscape-level indicator value
Rli Originally recorded biogeochemical, economic or social preference

indicator value for land-cover option, l
Rliu Rli±the considered deviation for given indicator deviations, uli
min(Rliu) Minimum indicator value for given indicator deviations, uli
max(Rliu) Maximum indicator value for given indicator deviations, uli
dmax.min Range of indicator values between land-cover options under given

indicator deviations, ui, max(Rliu)–min(Rliu)
al Area proportion allocated to the rehabilitation option, l, with L

being the set of land-cover types considered

We used the same model for the single-objective optimization, but reduced the
optimization by only considering one indicator and its 32 uncertainty scenarios at
the same time.

The multidimensional uncertainty spaces for the five land-cover types may
form a rough surface with 32 corner points. Altering the size of the uncertainty
spaces changes their shape. This explains the slight noise in the composition of
land-cover portfolios when altering the level of uncertainty and with it the shape of
the uncertainty space (for example, Fig. 5a,b). However, this noise had no influence
on the validity of the basic results.

Estrella et al.19 have published an innovative approach to optimal land
allocation with the aim of achieving multiple ecosystem services, which shows
some similarities to our approach. While integrating uncertainties was not the aim
of their study, the authors used an alternative to our constraint-based formulation
of the optimization problem (equation (1)). Their approach minimized maximum
non-achievement (Du,min) directly, using an appropriate objective function
(see Supplementary Methods for mathematical formulation). The authors averaged
the objective of minimizing maximum non-achievement, which is a non-
compensatory approach, with another objective, which allows for compensatory
minimization of distances (see also Eyvindson and Kangas23). Compensatory
minimization allows high performance in one indicator to compensate for low
performance in another indicator. Here the part of the objective function that
minimizes maximum non-achievement is relevant to our study, because it follows a
similar idea as our approach. In contrast to Estrella’s et al.19 approach, we used a
constraint-based formulation referring to robust optimization17,47 for addressing
uncertainty, which is excluded in Estrella et al.19.

Landscape composition. Shannon’s index70 (represented by H in equation (2))
has been computed for landscape portfolios, with al being the decimal proportion
of land allocated to each land-cover option in a given portfolio.

H ¼ �
X

i2L
al ln al ð2Þ

Bray–Curtis measure of dissimilarity (BCurin equation (3)) has been computed
based on the relative proportions (pl in per cent) of the land allocated to each land-
cover type (l). The landscape portfolio obtained under a theoretical maximum of
diversification (each land-cover-type comprising 20% of the available land) has
been used as a reference (index r). The proportions of each land-cover type
achieved in landscape portfolios under increasing levels of uncertainty (index u)
were compared with those for the reference landscape portfolio.

BCur ¼

PL

l¼1
pul � prlj j

200
ð3Þ

A BCur close to zero means low dissimilarity, while a BCur close to 100% indicates
high dissimilarity.

Data availability. The authors confirm that all the relevant data are available
through the lead author.
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