73 research outputs found

    Genotoxic damage in polychaetes: a study of species and cell-type sensitivities.

    Get PDF
    addresses: School of Biosciences, Hatherley Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK. [email protected]: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2008 Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, Vol. 654, Issue 1, pp. 69 – 75 DOI: http://dx.doi.org/10.1016/j.mrgentox.2008.05.008The marine environment is becoming increasingly contaminated by environmental pollutants with the potential to damage DNA, with marine sediments acting as a sink for many of these contaminants. Understanding genotoxic responses in sediment-dwelling marine organisms, such as polychaetes, is therefore of increasing importance. This study is an exploration of species-specific and cell-specific differences in cell sensitivities to DNA-damaging agents in polychaete worms, aimed at increasing fundamental knowledge of their responses to genotoxic damage. The sensitivities of coelomocytes from three polychaetes species of high ecological relevance, i.e. the lugworm Arenicola marina, the harbour ragworm Nereis diversicolor and the king ragworm Nereis virens to genotoxic damage are compared, and differences in sensitivities of their different coelomic cell types determined by use of the comet assay. A. marina was found to be the most sensitive to genotoxic damage induced by the direct-acting mutagen methyl methanesulfonate (MMS), and showed dose-dependent responses to MMS and the polycyclic aromatic hydrocarbon benzo(a)pyrene. Significant differences in sensitivity were also measured for the different types of coelomocyte. Eleocytes were more sensitive to induction of DNA damage than amoebocytes in both N. virens and N. diversicolor. Spermatozoa from A. marina showed significant DNA damage following in vitro exposure to MMS, but were less sensitive to DNA damage than coelomocytes. This investigation has clearly demonstrated that different cell types within the same species and different species within the polychaetes show significantly different responses to genotoxic insult. These findings are discussed in terms of the relationship between cell function and sensitivity and their implications for the use of polychaetes in environmental genotoxicity studies

    Self-assembled dextrin nanogel as protein carrier : controlled release and biological activity of IL-10

    Get PDF
    Interleukin-10 (IL-10) is an anti-inflammatory cytokine, which active form is a non-covalent homodimer. Given the potential of IL-10 for application in various medical conditions, it is essential to develop systems for its effective delivery. In previous work, it has been shown that a dextrin nanogel effectively incorporated and stabilized rIL10, enabling its release over time. In this work, the delivery system based on dextrin nanogels was further analyzed. The biocompatibility of the nanogel was comprehensively analyzed, through cytotoxicity (lactate dehydrogenase release, MTS, Live and Dead) and genotoxicity (comet) assays. The release profile of rIL-10 and its biological activity were evaluated in vivo, using C57BL/6 mice. Although able to maintain a stable concentration of IL-10 for at least 4 hours in mice serum, the amount of protein released was rather low. Despite this, the amount of rIL-10 released from the complex was biologically active inhibiting TNF-α production, in vivo, by LPSchallenged mice. In spite of the significant stabilization achieved using the nanogel, rIL-10 still denatures rather quickly. An additional effort is thus necessary to develop an effective delivery system for this cytokine, able to release active protein over longer periods of time. Nevertheless, the good biocompatibility, the protein stabilization effect and the ability to perform as a carrier with controlled release suggest that self-assembled dextrin nanogels may be useful protein delivery systems.Contract grant sponsor: Fundacao para a Ciencia e Tecnologia (FCT), PortugalContract grant number: SFRH/BD/27359/2006Contract grant sponsor: FCTContract grant number: PTDC/BIO/67160/2006; SUDOE-FEDERIMMUNONETSOE1/P1/E01

    Genotoxic potential of Cotinus coggygria Scop. (Anacardiaceae) stem extract in vivo

    Get PDF
    The intention was to evaluate the possible in vivo genotoxic potential in different cell-types, of a methanol extract obtained from the plant stem of Cotinus coggygria Scop., using the sex-linked recessive lethal (or SLRL) test and alkaline comet assay. The SLRL test, revealed the genotoxic effect of this extract in postmeiotic and premeiotic germ-cell lines. The comet assay was carried out on rat liver and bone marrow at 24 and 72 h after intraperitoneal administration. For genotoxic evaluation, three concentrations of the extract were tested, viz., 500, 1000 and 2000 mg/kg body weight (bw), based on the solubility limit of the extract in saline. Comet tail moment and total scores in the group treated with 500 mg/kg bw, 24 and 72 h after treatment, were not significantly different from the control group, whereas in the groups of animals, under the same conditions, but with 1000 and 2000 mg/kg bw of the extract, scores were statistically so. A slight decrease in the comet score and tail moment observed in all the doses in the 72 h treatment, gave to understand that DNA damage induced by Cotinus coggygria extract decreased with time. The results of both tests revealed the genotoxic effect of Cotinus coggygria under our experimental conditions

    Comparison of the effect of raw and blanched-frozen broccoli on DNA damage in colonocytes

    Get PDF
    Consumption of cruciferous vegetables may protect against colorectal cancer. Cruciferous vegetables are rich in a number of bioactive constituents including polyphenols, vitamins and glucosinolates. Before consumption, cruciferous vegetables often undergo some form of processing that reduces their content of bioactive constituents and may determine whether they exert protective effects. The aim of this study was to compare the ability of raw and blanched-frozen broccoli to protect colonocytes against DNA damage, improve antioxidant status and induce xenobiotic metabolising enzymes (XME). Fifteen Landrace x Large White male pigs were divided into five age and weight matched sets (79 days, SD 3, and 34.7 kg, SD 3.9 respectively). Each set consisted of siblings to minimise genetic variation. Within each set, pigs received a cereal-based diet, unsupplemented (control) or supplemented with 600 g/d of raw or blanched-frozen broccoli for 12 d. The consumption of raw broccoli caused a significant 27% increase in DNA damage in colonocytes (P=0.03) relative to the control diet, whereas blanched-frozen broccoli had no significant effect. Both broccoli diets had no significant effect on plasma antioxidant status or hepatic and colonic XME. This study is the first to report that the consumption of raw broccoli can damage DNA in porcine colonocytes

    Primary DNA damage and genetic polymorphisms for CYP1A1, EPHX and GSTM1 in workers at a graphite electrode manufacturing plant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The results of a cross-sectional study aimed to evaluate whether genetic polymorphisms (biomarkers of susceptibility) for <it>CYP1A1</it>, <it>EPHX </it>and <it>GSTM1 </it>genes that affect polycyclic aromatic hydrocarbons (PAH) activation and detoxification might influence the extent of primary DNA damage (biomarker of biologically effective dose) in PAH exposed workers are presented. PAH-exposure of the study populations was assessed by determining the concentration of 1-hydroxypyrene (1OHP) in urine samples (biomarker of exposure dose).</p> <p>Methods</p> <p>The exposed group consisted of workers (n = 109) at a graphite electrode manufacturing plant, occupationally exposed to PAH. Urinary 1OHP was measured by HPLC. Primary DNA damage was evaluated by the alkaline comet assay in peripheral blood leukocytes. Genetic polymorphisms for <it>CYP1A1</it>, <it>EPHX</it> and <it>GSTM1</it> were determined by PCR or PCR/RFLP analysis.</p> <p>Results</p> <p>1OHP and primary DNA damage were significantly higher in electrode workers compared to reference subjects. Moreover, categorization of subjects as normal or outlier highlighted an increased genotoxic risk OR = 2.59 (CI95% 1.32–5.05) associated to exposure to PAH. Polymorphisms in <it>EPHX</it> exons 3 and 4 was associated to higher urinary concentrations of 1OHP, whereas none of the genotypes analyzed (<it>CYP1A1</it>, <it>EPHX</it>, and <it>GSTM1</it>) had any significant influence on primary DNA damage as evaluated by the comet assay.</p> <p>Conclusion</p> <p>The outcomes of the present study show that molecular epidemiology approaches (i.e. cross-sectional studies of genotoxicity biomarkers) can play a role in identifying common genetic risk factors, also attempting to associate the effects with measured exposure data. Moreover, categorization of subjects as normal or outlier allowed the evaluation of the association between occupational exposure to PAH and DNA damage highlighting an increased genotoxic risk.</p

    Finding synergies for the 3Rs – Repeated dose toxicity testing: Report from an EPAA partners' forum

    Get PDF
    The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a Partners' Forum on repeated dose toxicity (RDT) testing to identify synergies between industrial sectors and stakeholders along with opportunities to progress these in existing research frameworks. Although RTD testing is not performed across all industrial sectors, the OECD accepted tests can provide a rich source of information and play a pivotal role for safety decisions relating to the use of chemicals. Currently there are no validated alternatives to repeated dose testing and a direct one-to-one replacement is not appropriate. However, there are many projects and initiatives at the international level which aim to implement various aspects of replacement, reduction and refinement (the 3Rs) in RDT testing. Improved definition of use, through better problem formulation, aligned to harmonisation of regulations is a key area, as is the more rapid implementation of alternatives into the legislative framework. Existing test designs can be optimised to reduce animal use and increase information content. Greater use of exposure-led decisions and improvements in dose selection will be beneficial. In addition, EPAA facilitates sharing of case studies demonstrating the use of Next Generation Risk Assessment applying various New Approach Methodologies to assess RDT

    Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development

    Get PDF
    The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.Toxicolog

    Der Parallelimport von Humanarzneimitteln – neue regulatorische Herausforderungen im Bereich der Pharmakovigilanz

    No full text
    Seit dem Vertrag zur Gründung der Europäischen Wirtschaftsgemeinschaft 1957 ist der freie Warenverkehr innerhalb der Mitgliedstaaten der damaligen Europäischen Wirtschaftsgemeinschaft (EWG) und heutigen Europäischen Union (EU) eine der vier garantierten Grundfreiheiten. Unter diese Freiheit fällt auch der Parallelimport von Arzneimitteln. Allerdings kann in Deutschland ein Arzneimittel nur von einem pharmazeutischen Unternehmer in den Verkehr gebracht werden. Somit sind Parallelimporteure im regulatorischen Sinne pharmazeutische Unternehmer mit allen damit verbundenen Rechten und Pflichten. Im folgenden Beitrag werden die regulatorischen Bedingungen, die damit verbunden sind, vorgestellt

    Use of the photo-micronucleus assay in Chinese hamster V79 cells to study photochemical genotoxicity

    No full text
    Photochemical genotoxicity can be detected using appropriately adapted versions of most of the standard in vitro genotoxicity assays. The most sensitive approach to detect potentially photogenotoxic agents seems to be the investigation of DNA damage (DNA strand breakage, chromosomal aberrations, micronuclei) in mammalian cells in vitro. In a previous paper, we proposed the use of the micronucleus assay in Chinese hamster V79 cells for this purpose. This assay was found suitable to detect various photogenotoxic compounds with different photoactivation mechanisms. In order to extend the experimental experiences with this assay, we present here further data from a screening mode testing of 16 different potential photosensitizers. The photoclastogenic and photocytotoxic potential of the compounds was investigated concomitantly. So far, all substances detected in the photo-micronucleus assay as photogenotoxins also exhibited photocytotoxic properties but not vice versa. Among the compounds tested in the present study, tiaprofenic acid, 5-MOP, angelicin, nitrazepam, bendroflumethiazide, and dacarbazine were photogenotoxic and photocytotoxic. Further, 6-mercaptopurine, a metabolite of azathioprine was positive for both endpoints, whereas azathioprine was found negative. Azathioprine seems to be an example of a compound which lacks photo(geno)toxic properties in vitro but may be converted to a photosensitizer by enzymatical metabolization. With the results obtained in this study, the data base for the photo-micronucleus assay was extended to 35 compounds, which were tested using the same protocol and the same irradiation conditions. The photogenotoxicity results of all these compounds are summarized and discussed in correlation to their different photoactivation mechanisms, photocytotoxicity and photocarcinogenicity
    • …
    corecore