103 research outputs found

    The algebraic surfaces on which the classical Phragmén-Lindelöf theorem holds

    Full text link
    Let V be an algebraic variety in . We say that V satisfies the strong Phragmén-Lindelöf property (SPL) or that the classical Phragmén-Lindelöf Theorem holds on V if the following is true: There exists a positive constant A such that each plurisubharmonic function u on V which is bounded above by | z |+ o (| z |) on V and by 0 on the real points in V already is bounded by A | Im z |. For algebraic varieties V of pure dimension k we derive necessary conditions on V to satisfy (SPL) and we characterize the curves and surfaces in which satisfy (SPL). Several examples illustrate how these results can be applied.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46283/1/209_2005_Article_913.pd

    Gyroscopic Pumping in the Solar Near-Surface Shear Layer

    Full text link
    We use global and local helioseismic inversions to explore the prevailing dynamical balances in the solar Near-Surface Shear Layer (NSSL). The differential rotation and meridional circulation are intimately linked, with a common origin in the turbulent stresses of the upper solar convection zone. The existence and structure of the NSSL cannot be attributed to the conservation of angular momentum by solar surface convection, as is often supposed. Rather, the turbulent angular momentum transport accounts for the poleward meridional flow while the often overlooked meridional force balance maintains the mid-latitude rotational shear. We suggest that the base of the NSSL is marked by a transition from baroclinic to turbulent stresses in the meridional plane which suppress Coriolis-induced circulations that would otherwise establish a cylindrical rotation profile. The turbulent angular momentum transport must be non-diffusive and directed radially inward. Inferred mean flows are consistent with the idea that turbulent convection tends to mix angular momentum but only if the mixing efficiency is inhomogeneous and/or anisotropic. The latitudinal and longitudinal components of the estimated turbulent transport are comparable in amplitude and about an order of magnitude larger than the vertical component. We estimate that it requires 2--4% of the solar luminosity to maintain the solar NSSL against the inertia of the mean flow. Most of this energy is associated with the turbulent transport of angular momentum out of the layer, with a spin-down time scale of \sim 600 days. We also address implications of these results for numerical modeling of the NSSL.Comment: 26 pages, 11 Figures, Accepted on August 25, 2011 for publication in the Astrophysical Journa

    Mechanical aspects in interferometric gravity wave detectors

    No full text
    In order to measure the tiny effects of gravitational waves, strains in space (i.e. relative changes in distance) of as little as 10-21 or even less have to be detected, at frequencies ranging from 10011z to several kHz. Large laser interferometers are the most promising approach to reach such extreme sensitivities. This lsquostraightforwardrsquo road is, however, obstructed by a multitude of effects that cause (or fake) such fluctuations in distance. Among these are seismic motions, thermal vibrations of optical components, pressure fluctuations of the residual gas in the vacuum tubes, and fundamental effects such as Heisenberg's uncertainty relation. What all of these noise sources have in common is that their effects can be reduced by the choice of sufficiently large arm lengths. This is what dictates the (very expensive) choice of arm lengths of 3 to 4 km in the currently proposed gravitational wave detectors (USA, D-GB, F-I, AUS, JAP)

    Spermatogonial Stem Cell Niche and Spermatogonial Stem Cell Transplantation in Zebrafish

    Get PDF
    Background Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis, and reside within a specific microenvironment in the testes called “niche” which regulates stem cell properties, such as, self-renewal, pluripotency, quiescence and their ability to differentiate. Methodology/Principal Findings Here, we introduce zebrafish as a new model for the study of SSCs in vertebrates. Using 5′-bromo-2′-deoxyuridine (BrdU), we identified long term BrdU-retaining germ cells, type A undifferentiated spermatogonia as putative stem cells in zebrafish testes. Similar to rodents, these cells were preferentially located near the interstitium, suggesting that the SSC niche is related to interstitial elements and might be conserved across vertebrates. This localization was also confirmed by analyzing the topographical distribution of type A undifferentiated spermatogonia in normal, vasa::egfp and fli::egfp zebrafish testes. In the latter one, the topographical arrangement suggested that the vasculature is important for the SSC niche, perhaps as a supplier of nutrients, oxygen and/or signaling molecules. We also developed an SSC transplantation technique for both male and female recipients as an assay to evaluate the presence, biological activity, and plasticity of the SSC candidates in zebrafish. Conclusions/Significance We demonstrated donor-derived spermato- and oogenesis in male and female recipients, respectively, indicating the stemness of type A undifferentiated spermatogonia and their plasticity when placed into an environment different from their original niche. Similar to other vertebrates, the transplantation efficiency was low. This might be attributed to the testicular microenvironment created after busulfan depletion in the recipients, which may have caused an imbalance between factors regulating self-renewal or differentiation of the transplanted SSCs

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    A partial differential operator which is surjective on Gevrey classes Γd(R3)Γ^{d}(ℝ³) with 1 ≤ d < 2 and d ≥ 6 but not for 2 ≤ d < 6

    No full text
    It is shown that the partial differential operator P(D)=4/x42/y2+i/z:Γd(R3)Γd(R3)P(D) = ∂⁴/∂x⁴ - ∂²/∂y² + i∂/∂z : Γ^d(ℝ³) → Γ^d(ℝ³) is surjective if 1 ≤ d < 2 or d ≥ 6 and not surjective for 2 ≤ d < 6
    corecore