594 research outputs found

    Bioactive and Antioxidant Activity from Citrus bergamia Risso (Bergamot) Juice Collected in Different Areas of Reggio Calabria Province, Italy

    Get PDF
    The chemical composition and antioxidant activity of juice extracted from seven samples of bergamot (Citrus bergamia Risso) collected in different areas of Reggio Calabria Province were investigated. The ascorbic acid, total polyphenol, and flavonoid contents were determined. Total flavonoids and polyphenols were analyzed by ultraviolet spectra, while flavanone content was analyzed by high-performance liquid chromatography. The antioxidant activity of the fractions was assessed using three representative assays: 2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonic acid), 1,1-Diphenyl-2-picryl-hydrazyl radical quenching and β-carotene bleaching test. The main flavanones were naringin, neohesperedin, and neoeriocitrin, and their average content 242.4 ± 1.8, 183.0 ± 0.6, and 247.0 ± 1.4 mg mL–1, respectively. The results showed that bergamot juice possessed a good quality and a valuable source of health promoting constituents. In fact it contained eriocitrin, naringin, neoeriocitrin, and neohesperedin, which may ..

    Therapeutic Cancer Vaccination with Immunopeptidomics-Discovered Antigens Confers Protective Antitumor Efficacy

    Get PDF
    Simple Summary Immunotherapy has revolutionized cancer treatment, yet many tumors remain resistant to current immuno-oncology therapies. Here we explore a novel, customized oncolytic adenovirus vaccine platform as immunotherapy in a resistant tumor model. We present a workflow for customizing the oncolytic vaccine for improved tumor targeting. This targeting is based on experimentally discovered tumor antigens, which are incorporated as active components of the vaccine formulation. The pipeline may be further applied for designing personalized therapeutic cancer vaccines. Knowledge of clinically targetable tumor antigens is becoming vital for broader design and utility of therapeutic cancer vaccines. This information is obtained reliably by directly interrogating the MHC-I presented peptide ligands, the immunopeptidome, with state-of-the-art mass spectrometry. Our manuscript describes direct identification of novel tumor antigens for an aggressive triple-negative breast cancer model. Immunopeptidome profiling revealed 2481 unique antigens, among them a novel ERV antigen originating from an endogenous retrovirus element. The clinical benefit and tumor control potential of the identified tumor antigens and ERV antigen were studied in a preclinical model using two vaccine platforms and therapeutic settings. Prominent control of established tumors was achieved using an oncolytic adenovirus platform designed for flexible and specific tumor targeting, namely PeptiCRAd. Our study presents a pipeline integrating immunopeptidome analysis-driven antigen discovery with a therapeutic cancer vaccine platform for improved personalized oncolytic immunotherapy.Peer reviewe

    A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines

    Get PDF
    Besides the isolation and identification of major histocompatibility complex I-restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective antitumor CD8+ T-cell-mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific antitumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate > 8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and HEX software. The latter is a tool previously developed by Jacopo, 2020, able to identify tumor antigens similar to pathogen antigens in order to exploit molecular mimicry and tumor pathogen cross-reactive T cells in cancer vaccine development. The generated list of candidates (26 in total) was further tested in a functional characterization assay using interferon-gamma enzyme-linked immunospot (ELISpot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, nontreated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.Peer reviewe

    Combining Near Infrared Spectroscopy and functional MRI during Continuous Performance Test in healthy subjects

    Get PDF
    Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'06: pp. 1944-1947.The study of cognitive functions is a major challenge of the modern functional imaging. Activation of specific cerebral area is obtained from the observation of physic characteristic affected by changes occurring in the blood flow resulting from an increased metabolic consumption. In this work two imaging techniques are used, the functional magnetic resonance (fMRI) and the Near Infrared Spectroscopy (NIRS), in order to assess cerebral performance during the execution of a well known sustained attention task, the Conners’ Continuous Performance Test (CPT). With fMRI analysis were found activations in the frontal, parietal and supplementary motor areas, whereas NIRS system showed a region-wise difference in the variations of parameters and different activation trend localized in the middle-right frontal area. The combined analysis of the two techniques allows to obtain more detailed information and places itself as a first step toward a result of multimodal image integration

    Surface ruptures following the 26 December 2018, Mw 4.9, Mt. Etna earthquake, Sicily (Italy)

    Get PDF
    We present a 1:10,000 scale map of the coseismic surface ruptures following the 26 December 2018 Mw 4.9 earthquake that struck the eastern flank of Mt. Etna volcano (southern Italy). Detailed rupture mapping is based on extensive field surveys in the epicentral region. Despite the small size of the event, we were able to document surface faulting for about 8 km along the trace of the NNW-trending active Fiandaca Fault, belonging to the Timpe tectonic system in the eastern flank of the volcano. The mapped ruptures are characterized in most cases by perceivable opening and by a dominant right-oblique sense of slip, with an average slip of about 0.09 m and a peak value of 0.35 m. It is also noteworthy that the ruptures vary significantly in their kinematic expression, denoting locally high degree of complexity of the surface faulting.Published831-8372T. Deformazione crostale attivaJCR Journa

    Surface ruptures database related to the 26 December 2018, MW 4.9 Mt. Etna earthquake, southern Italy

    Get PDF
    We provide a database of the surface ruptures produced by the 26 December 2018 Mw 4.9 earthquake that struck the eastern flank of Mt. Etna volcano in Sicily (southern Italy). Despite its relatively small magnitude, this shallow earthquake caused about 8 km of surface faulting, along the trace of the NNW-trending active Fiandaca Fault. Detailed field surveys have been performed in the epicentral area to map the ruptures and to characterize their kinematics. The surface ruptures show a dominant right-oblique sense of displacement with an average slip of about 0.09 m and a maximum value of 0.35 m. We have parsed and organized all observations in a concise database, with 932 homogeneous georeferenced records. The Fiandaca Fault is part of the complex active Timpe faults system affecting the eastern flank of Etna, and its seismic history indicates a prominent surface-faulting potential. Therefore, this database is essential for unravelling the seismotectonics of shallow earthquakes in volcanic areas, and contributes updating empirical scaling regressions that relate magnitude and extent of surface faulting.Publishedid 422T. Deformazione crostale attivaJCR Journa

    Can Clinical and Surgical Parameters Be Combined to Predict How Long It Will Take a Tibia Fracture to Heal? A Prospective Multicentre Observational Study: The FRACTING Study

    Get PDF
    Background. Healing of tibia fractures occurs over a wide time range of months, with a number of risk factors contributing to prolonged healing. In this prospective, multicentre, observational study, we investigated the capability of FRACTING (tibia FRACTure prediction healING days) score, calculated soon after tibia fracture treatment, to predict healing time. Methods. The study included 363 patients. Information on patient health, fracture morphology, and surgical treatment adopted were combined to calculate the FRACTING score. Fractures were considered healed when the patient was able to fully weight-bear without pain. Results. 319 fractures (88%) healed within 12 months from treatment. Forty-four fractures healed after 12 months or underwent a second surgery. FRACTING score positively correlated with days to healing: r = 0.63 (p < 0.0001). Average score value was 7.3 \ub1 2.5; ROC analysis showed strong reliability of the score in separating patients healing before versus after 6 months: AUC = 0.823. Conclusions. This study shows that the FRACTING score can be employed both to predict months needed for fracture healing and to identify immediately after treatment patients at risk of prolonged healing. In patients with high score values, new pharmacological and nonpharmacological treatments to enhance osteogenesis could be tested selectively, which may finally result in reduced disability time and health cost savings

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Il terremoto di Fleri (Etna) del 26 dicembre 2018 Mw 4.9. Parte II: rilievo degli effetti di fagliazione cosismica superficiale

    Get PDF
    Il terremoto del 26 dicembre 2019, ore 02:19 UTC, che ha colpito il basso versante sud-orientale dell’Etna, ha prodotto non solo danni gravi e distruzioni nell’area epicentrale, pari al grado 8 EMS (Azzaro et al., in questo volume), ma anche vistose rotture superficiali lungo la faglia di Fiandaca, che è la struttura più meridionale del sistema tettonico delle Timpe (Fig. 1a). Gli effetti di fagliazione cosismica in area etnea sono storicamente piuttosto frequenti in occasione di terremoti superficiali (< 2-3 km), anche per valori di magnitudo relativamente modesti (M ≥ 3.5, vedi Azzaro, 1999). Con una magnitudo Mw 4.9 (Regional Centroid Moment Tensors, https://doi.org/10.13127/rcmt/italy), il terremoto in questione rappresenta l’evento più significativo, in termini di entità e complessità della fagliazione associata, verificatosi nell’area etnea negli ultimi 70 anni, con una estensione della rottura superiore rispetto a quelle storiche (< 6.5 km). Il gruppo di emergenza per il rilievo degli effetti geologici cosismici EMERGEO (http://emergeo.ingv.it) dell’INGV, si è pertanto attivato effettuando quattro campagne di misura con squadre che si sono alternate sul terreno (per un totale di 60 gg/persona), supportate da personale del proprio Centro Operativo per l’organizzazione dei dati e il popolamento del database (43 gg/persona). Il rilievo ha consentito la raccolta e catalogazione di circa 900 punti di misura relativi a posizionamento, geometria, rigetto e cinematica delle fratture cosismiche.UnpublishedRoma2T. Deformazione crostale attiv
    • …
    corecore