77 research outputs found

    Kepler-1656b: a Dense Sub-Saturn With an Extreme Eccentricity

    Get PDF
    Kepler-1656b is a 5 RER_E planet with an orbital period of 32 days initially detected by the prime Kepler mission. We obtained precision radial velocities of Kepler-1656 with Keck/HIRES in order to confirm the planet and to characterize its mass and orbital eccentricity. With a mass of 48±4ME48 \pm 4 M_E, Kepler-1656b is more massive than most planets of comparable size. Its high mass implies that a significant fraction, roughly 80%, of the planet's total mass is in high density material such as rock/iron, with the remaining mass in a low density H/He envelope. The planet also has a high eccentricity of 0.84±0.010.84 \pm 0.01, the largest measured eccentricity for any planet less than 100 MEM_E. The planet's high density and high eccentricity may be the result of one or more scattering and merger events during or after the dispersal of the protoplanetary disk.Comment: 10 pages, 6 figures, published in The Astronomical Journa

    Adenoviral-mediated gene transfer of ICP47 inhibits major histocompatibility complex class I expression on vascular cells in vitro

    Get PDF
    AbstractPurpose: Many viruses have evolved mechanisms to evade detection by the host immune system. The herpes simplex gene ICP47 encodes a protein that binds to the host antigen-processing transporter, inhibiting the formation of major histocompatibility complex class I (MHC-I) antigens in infected cells. MHC-I antigen expression is also important in acute allograft rejection. This study was designed to quantitate the effect of adenoviral-mediated gene transfer of ICP47 on MHC-I cell surface expression of human vascular cells. We hypothesized that the transduction of vascular cells with a replication-incompetent adenoviral vector that was expressing ICP47 (AdICP47) would inhibit constitutive and inducible MHC-I expression and thereby reduce the rate of cytolysis of ICP47-transduced vascular cells by sensitized cytotoxic T lymphocytes (CTL). Methods: A replication-incompetent adenoviral vector, AdICP47, was created to express ICP47 driven by the cytomegalovirus immediate early promoter. Cultured human vascular endothelial and smooth muscle cells and human dermal fibroblasts were transduced with either AdICP47 or the control empty vector AddlE1. Cell surface constitutive and γ-interferon–induced MHC-I expression were quantitated by flow cytometry. A standard 4-hour chromium release cytotoxicity assay was used to determine the percent cytolysis of transduced and nontransduced endothelial cells by sensitized CTL. Finally, to quantitate the specificity of the effect of ICP47 on MHC-I expression, adhesion molecule expression was quantitated in both transduced and nontransduced cells. Results: Constitutive MHC-I expression in AdICP47-transduced endothelial cells was inhibited by a mean of 84% ± 5% (SEM) in five experiments. After 48 hours of exposure to γ-interferon, AdICP47-transduced cells exhibited a mean of 66% ± 8% lower MHC-I expression than nontransduced cells. Similar inhibition in MHC-I expression was achieved in AdICP47-transduced vascular smooth muscle cells and dermal fibroblasts. Percent cytolysis of AdICP47-transduced endothelial cells by CTL was reduced by 72%. Finally, the specificity of the effect of transduction of ICP47 on vascular cell MHC-I expression was confirmed by a lack of significant change in either constitutive or tumor necrosis factor–induced vascular cell adhesion molecule/intercellular adhesion molecule expression. Conclusion: Transduction of vascular cells with AdICP47 strongly inhibits both constitutive and inducible MHC-I expression in human vascular cells. AdICP47-transduced cells exhibited a substantial reduction in cytolysis by CTL. Thus AdICP47 transduction holds promise as a technique to characterize the role of MHC-I expression in acute vascular allograft rejection in vivo and as a potential therapeutic intervention. (J Vasc Surg 2000;31:558-66.

    Measuring the Obliquities of the TRAPPIST-1 Planets with MAROON-X

    Full text link
    A star's obliquity with respect to its planetary system can provide us with insight into the system's formation and evolution, as well as hinting at the presence of additional objects in the system. However, M dwarfs, which are the most promising targets for atmospheric follow-up, are underrepresented in terms of obliquity characterization surveys due to the challenges associated with making precise measurements. In this paper, we use the extreme-precision radial velocity spectrograph MAROON-X to measure the obliquity of the late M dwarf TRAPPIST-1. With the Rossiter-McLaughlin effect, we measure a system obliquity of 219+17-2^{+17}_{-19} degrees and a stellar rotational velocity of 2.1 ±\pm 0.3 km s1^{-1}. We were unable to detect stellar surface differential rotation, and we found that a model in which all planets share the same obliquity was favored by our current data. We were unable to make a detection of the signatures of the planets using Doppler tomography, which is likely a result of the both the slow rotation of the star and the low SNR of the data. Overall, TRAPPIST-1 appears to have a low obliquity, which could imply that the system has a low primordial obliquity. It also appears to be a slow rotator, which is consistent with past characterizations of the system and estimates of the star's rotation period. The MAROON-X data allow for a precise measurement of the stellar obliquity through the Rossiter-McLaughlin effect, highlighting the capabilities of MAROON-X and its ability to make high-precision RV measurements around late, dim stars.Comment: 18 pages, 6 figures, submitted to A

    Updated Planetary Mass Constraints of the Young V1298 Tau System Using MAROON-X

    Get PDF
    The early K-type T-Tauri star, V1298 Tau (V=10magV=10\,{\rm mag}, age2030Myr{\rm age}\approx20-30\,{\rm Myr}) hosts four transiting planets with radii ranging from 4.99.6R4.9-9.6\,R_\oplus. The three inner planets have orbital periods of 824d\approx8-24\,{\rm d} while the outer planet's period is poorly constrained by single transits observed with \emph{K2} and \emph{TESS}. Planets b, c, and d are proto-sub-Neptunes that may be undergoing significant mass loss. Depending on the stellar activity and planet masses, they are expected to evolve into super-Earths/sub-Neptunes that bound the radius valley. Here we present results of a joint transit and radial velocity (RV) modelling analysis, which includes recently obtained \emph{TESS} photometry and MAROON-X RV measurements. Assuming circular orbits, we obtain a low-significance (2σ\approx2\sigma) RV detection of planet c implying a mass of 19.88.9+9.3M19.8_{-8.9}^{+9.3}\,M_\oplus and a conservative 2σ2\sigma upper limit of <39M<39\,M_\oplus. For planets b and d, we derive 2σ2\sigma upper limits of Mb<159MM_{\rm b}<159\,M_\oplus and Md<41MM_{\rm d}<41\,M_\oplus. For planet e, plausible discrete periods of Pe>55.4dP_{\rm e}>55.4\,{\rm d} are ruled out at a 3σ3\sigma level while seven solutions with 43.3<Pe/d<55.443.3<P_{\rm e}/{\rm d}<55.4 are consistent with the most probable 46.768131±000076d46.768131\pm000076\,{\rm d} solution within 3σ3\sigma. Adopting the most probable solution yields a 2.6σ2.6\sigma RV detection with mass a of 0.66±0.26MJup0.66\pm0.26\,M_{\rm Jup}. Comparing the updated mass and radius constraints with planetary evolution and interior structure models shows that planets b, d, and e are consistent with predictions for young gas-rich planets and that planet c is consistent with having a water-rich core with a substantial (5%\sim5\% by mass) H2_2 envelope.Comment: 18 pages, 13 figures, accepted for publication in A

    TOI-561 b: A Low Density Ultra-Short Period "Rocky" Planet around a Metal-Poor Star

    Full text link
    TOI-561 is a galactic thick disk star hosting an ultra-short period (0.45 day orbit) planet with a radius of 1.37 R_{\oplus}, making it one of the most metal-poor ([Fe/H] = -0.41) and oldest (\sim10 Gyr) sites where an Earth-sized planet has been found. We present new simultaneous radial velocity measurements (RVs) from Gemini-N/MAROON-X and Keck/HIRES, which we combined with literature RVs to derive a mass of Mb_{b}=2.24 ±\pm 0.20 M_{\oplus}. We also used two new Sectors of TESS photometry to improve the radius determination, finding Rb_{b}=1.37±0.04R1.37 \pm 0.04 R_\oplus, and confirming that TOI-561 b is one of the lowest-density super-Earths measured to date (ρb\rho_b= 4.8 ±\pm 0.5 g/cm3^{3}). This density is consistent with an iron-poor rocky composition reflective of the host star's iron and rock-building element abundances; however, it is also consistent with a low-density planet with a volatile envelope. The equilibrium temperature of the planet (\sim2300 K) suggests that this envelope would likely be composed of high mean molecular weight species, such as water vapor, carbon dioxide, or silicate vapor, and is likely not primordial. We also demonstrate that the composition determination is sensitive to the choice of stellar parameters, and that further measurements are needed to determine if TOI-561 b is a bare rocky planet, a rocky planet with an optically thin atmosphere, or a rare example of a non-primordial envelope on a planet with a radius smaller than 1.5 R_{\oplus}.Comment: Accepted to AJ on 11/28/202

    A second planet transiting LTT 1445A and a determination of the masses of both worlds

    Get PDF
    K.H. acknowledges support from STFC grant ST/R000824/1.LTT 1445 is a hierarchical triple M-dwarf star system located at a distance of 6.86 pc. The primary star LTT 1445A (0.257 M⊙) is known to host the transiting planet LTT 1445Ab with an orbital period of 5.36 days, making it the second-closest known transiting exoplanet system, and the closest one for which the host is an M dwarf. Using Transiting Exoplanet Survey Satellite data, we present the discovery of a second planet in the LTT 1445 system, with an orbital period of 3.12 days. We combine radial-velocity measurements obtained from the five spectrographs, Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations, High Accuracy Radial Velocity Planet Searcher, High-Resolution Echelle Spectrometer, MAROON-X, and Planet Finder Spectrograph to establish that the new world also orbits LTT 1445A. We determine the mass and radius of LTT 1445Ab to be 2.87 ± 0.25 M⊕ and 1.304-0.060+0.067 R⊕, consistent with an Earth-like composition. For the newly discovered LTT 1445Ac, we measure a mass of 1.54-0.19+0.20 M⊕ and a minimum radius of 1.15 R⊕, but we cannot determine the radius directly as the signal-to-noise ratio of our light curve permits both grazing and nongrazing configurations. Using MEarth photometry and ground-based spectroscopy, we establish that star C (0.161 M⊙) is likely the source of the 1.4 day rotation period, and star B (0.215 M⊙) has a likely rotation period of 6.7 days. We estimate a probable rotation period of 85 days for LTT 1445A. Thus, this triple M-dwarf system appears to be in a special evolutionary stage where the most massive M dwarf has spun down, the intermediate mass M dwarf is in the process of spinning down, while the least massive stellar component has not yet begun to spin down.Publisher PDFPeer reviewe

    Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems

    Full text link
    corecore