31 research outputs found

    Co-Variation of Tonality in the Music and Speech of Different Cultures

    Get PDF
    Whereas the use of discrete pitch intervals is characteristic of most musical traditions, the size of the intervals and the way in which they are used is culturally specific. Here we examine the hypothesis that these differences arise because of a link between the tonal characteristics of a culture's music and its speech. We tested this idea by comparing pitch intervals in the traditional music of three tone language cultures (Chinese, Thai and Vietnamese) and three non-tone language cultures (American, French and German) with pitch intervals between voiced speech segments. Changes in pitch direction occur more frequently and pitch intervals are larger in the music of tone compared to non-tone language cultures. More frequent changes in pitch direction and larger pitch intervals are also apparent in the speech of tone compared to non-tone language cultures. These observations suggest that the different tonal preferences apparent in music across cultures are closely related to the differences in the tonal characteristics of voiced speech

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    The Biological Basis of Emotion in Musical Tonality

    No full text
    <p>In most aspects of music--e.g., tempo, intensity, and rhythm--the emotional coloring of a melody is due at least in part to physical imitation of the characteristics of emotional expression in human behavior. Thus excited, happy melodies are fast and loud, with syncopated rhythms, whereas subdued sad melodies are slow and quiet, with more even rhythms. The tonality of a melody (e.g. major or minor) also conveys emotion, but unlike other aspects of music, the basis for its affective impact is not clear. This thesis examines the hypothesis that different collections of musical tones are associated with specific emotions because they mimic the natural relationship between emotion and tonality present in the human voice. To evaluate this possibility, I have conducted acoustical analyses on databases of music and speech drawn from a variety of cultures, and compared the tonal characteristics of emotional expression between these two forms of social communication. I find that: (1) the melodic characteristics of music and the prosodic characteristics of speech co-vary when examined across cultures; (2) the principal tonal characteristics of melodies composed in tonalities associated with positive/excited emotion and negative/subdued emotion are much the same in different cultures; (3) cross-cultural tonal similarities in music parallel cross-cultural tonal similarities in vocal expression; and (4) the tonal characteristics of emotional expression in the voice convey distinct emotions, thereby accounting for the specificity of emotional association in musical tonality. These findings, and the implausibility of alternative explanations that could account for them, suggest that the affective impact of musical tonality derives from mimicry of the tonal characteristics of vocalization in different emotional states.</p>Dissertatio

    Expression of Emotion in Eastern and Western Music Mirrors Vocalization

    No full text
    In Western music, the major mode is typically used to convey excited, happy, bright or martial emotions, whereas the minor mode typically conveys subdued, sad or dark emotions. Recent studies indicate that the differences between these modes parallel differences between the prosodic and spectral characteristics of voiced speech sounds uttered in corresponding emotional states. Here we ask whether tonality and emotion are similarly linked in an Eastern musical tradition. The results show that the tonal relationships used to express positive/excited and negative/subdued emotions in classical South Indian music are much the same as those used in Western music. Moreover, tonal variations in the prosody of English and Tamil speech uttered in different emotional states are parallel to the tonal trends in music. These results are consistent with the hypothesis that the association between musical tonality and emotion is based on universal vocal characteristics of different affective states

    Expression of emotion in Eastern and Western music mirrors vocalization.

    Get PDF
    In Western music, the major mode is typically used to convey excited, happy, bright or martial emotions, whereas the minor mode typically conveys subdued, sad or dark emotions. Recent studies indicate that the differences between these modes parallel differences between the prosodic and spectral characteristics of voiced speech sounds uttered in corresponding emotional states. Here we ask whether tonality and emotion are similarly linked in an Eastern musical tradition. The results show that the tonal relationships used to express positive/excited and negative/subdued emotions in classical South Indian music are much the same as those used in Western music. Moreover, tonal variations in the prosody of English and Tamil speech uttered in different emotional states are parallel to the tonal trends in music. These results are consistent with the hypothesis that the association between musical tonality and emotion is based on universal vocal characteristics of different affective states

    Musical intervals in Carnatic and Western music.

    No full text
    <p>(A) The 12 principal intervals of Carnatic music (13 including unison). Each interval is a tone defined by the ratio of its fundamental frequency to the tonic (Sa). Interval names, abbreviations, frequency ratios, and sizes in cents for just intonation (JI) as well as 12-tone equal temperament (12-TET) tunings are shown. When two names are given they refer to enharmonic equivalents. Here and in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031942#pone-0031942-g002" target="_blank">Figure 2</a>, a dot above or below the abbreviated interval name indicates that it belongs in the octave above or below, respectively. (B) The 12 intervals of the Western chromatic scale, comparably presented.</p

    The <i>ragas</i> and modes examined.

    No full text
    <p>(A) Carnatic <i>ragas</i> commonly associated with positive/excited and negative/subdued emotion, and the number of melodies examined in each. The interval name abbreviations are from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031942#pone-0031942-g001" target="_blank">Figure 1</a>. (B) Western modes commonly associated with positive/excited and negative/subdued emotion are included for comparison (data from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031942#pone.0031942-Bowling1" target="_blank">[19]</a>).</p

    Method of voiced speech extraction.

    No full text
    <p>Panel 1 shows the waveform (gray; sound pressure level) of a portion of a speech recording (the phrase “million dollars”) overlaid with indicators of F0 (blue; Hz) and relative intensity (green; dB SPL) calculated at each 10 ms time-step. The missing segments in the F0 contour are segments of “unvoiced” speech (see Text S and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031942#pone.0031942.s008" target="_blank">S2</a>). Panel 2 shows the same information but with time-points representing local maxima in the intensity contour (arrows) that are also voiced indicated (red crosses). Panel 3 shows the 50 ms windows (red) of voiced speech extracted for spectral analysis; the segments are centered on the voiced intensity maxima in the middle panel.</p
    corecore