238 research outputs found

    Large Trees, Supertrees, and Diversification of the Grass Family

    Get PDF
    Phylogenetic studies of grasses (Poaceae) are advanced in comparison with most other angiosperm families. However, few studies have attempted to build large phylogenetic trees of the family and use these for evaluating patterns of diversiïŹcation or other macroevolutionary hypotheses. Two contrasting approaches can be used to generate large trees: supermatrix analyses and supertrees. In this paper, we evaluated the suitability of each of these methods for the study of patterns and processes of evolution in the grasses. We collected data from DDBJ/EMBL/GenBank to determine sequence availability and asked how far we are from a complete generic-level phylogenetic tree of the grasses. We generated almost complete tribal-level supertrees (39 tribes) with over 400 genera using MRP methods, described their major clades, assessed their accuracy, and used them for the study of diversiïŹcation. We generated a proportional supertree, by modifying the original supertree, to remove sampling bias associated with the original supertree that may affect diversiïŹcation statistics. We used methods that incorporate information on the topological distribution of taxon diversity from all internal nodes of the phylogenetic tree to show that the grasses have experienced signiïŹcant variations in diversiïŹcation rates (M statistic P-value

    Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia

    Get PDF
    Previous phylogenetic studies have indicated that Acacia Miller s.l. is polyphyletic and in need of reclassification. A proposal to conserve the name Acacia for the larger Australian contingent of the genus (formerly subgenus Phyllodineae) resulted in the retypification of the genus with the Australian A. penninervis. However, Acacia s.l. comprises at least four additional distinct clades or genera, some still requiring formal taxonomic transfer of species. These include Vachellia (formerly subgenus Acacia), Senegalia (formerly subgenus Aculeiferum), Acaciella (formerly subgenus Aculeiferum section Filicinae) and Mariosousa (formerly the A. coulteri group). In light of this fragmentation of Acacia s.l., there is a need to assess relationships of the non-Australian taxa. A molecular phylogenetic study of Acacia s.l and close relatives occurring in Africa was conducted using sequence data from matK/trnK, trnL-trnF and psbA-trnH with the aim of determining the placement of the African species in the new generic system. The results reinforce the inevitability of recognizing segregate genera for Acacia s.l. and new combinations for the African species in Senegalia and Vachellia are formalized.Web of Scienc

    Molecular Basis of the Waxy Endosperm Starch Phenotype in Broomcorn Millet (Panicum miliaceum L.)

    Get PDF
    Waxy varieties of the tetraploid cereal broomcorn millet (Panicum miliaceum L.) have endosperm starch granules lacking detectable amylose. This study investigated the basis of this phenotype using molecular and biochemical methods. Iodine staining of starch granules in 72 plants from 38 landrace accessions found 58 nonwaxy and 14 waxy phenotype plants. All waxy types were in plants from Chinese and Korean accessions, a distribution similar to that of the waxy phenotype in other cereals. Granule-bound starch synthase I (GBSSI) protein was present in the endosperm of both nonwaxy and waxy individuals, but waxy types had little or no granule-bound starch synthase activity compared with the wild types. Sequencing of the GBSSI (Waxy) gene showed that this gene is present in two different forms (L and S) in P. miliaceum, which probably represent homeologues derived from two distinct diploid ancestors. Protein products of both these forms are present in starch granules. We identified three polymorphisms in the exon sequence coding for mature GBSSI peptides. A 15-bp deletion has occurred in the S type GBSSI, resulting in the loss of five amino acids from glucosyl transferase domain 1 (GTD1). The second GBSSI type (L) shows two sequence polymorphisms. One is the insertion of an adenine residue that causes a reading frameshift, and the second causes a cysteine–tyrosine amino acid polymorphism. These mutations appear to have occurred in parallel from the ancestral allele, resulting in three GBSSI-L alleles in total. Five of the six possible genotype combinations of the S and L alleles were observed. The deletion in the GBSSI-S gene causes loss of protein activity, and there was 100% correspondence between this deletion and the waxy phenotype. The frameshift mutation in the L gene results in the loss of L-type protein from starch granules. The L isoform with the tyrosine residue is present in starch granules but is nonfunctional. This loss of function may result from the substitution of tyrosine for cysteine, although it could not be determined whether the cysteine isoform of L represents the functional type. This is the first characterization of mutations that occur in combination in a functionally polyploid species to give a fully waxy phenotype

    Rapid Sequencing of the Bamboo Mitochondrial Genome Using Illumina Technology and Parallel Episodic Evolution of Organelle Genomes in Grasses

    Get PDF
    Background: Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings: We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the wellresolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significan

    Increased diversification rates follow shifts to bisexuality in liverworts

    Get PDF
    Shifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether shifts in sexual systems influence diversification using hidden state speciation and extinction analysis (HiSSE). This new method compares the effects of the variable of interest to the best-fitting latent variable, yielding robust and conservative tests. We find that the transitions in sexual systems are significantly biased toward unisexuality, even though bisexuality is coupled with increased diversification. Sexual systems are strongly conserved deep within the liverwort tree but become much more labile toward the present. Bisexuality appears to be a key innovation in liverworts. Its effects on diversification are presumably mediated by the interplay of high fertilization rates, massive spore production and long-distance dispersal, which may separately or together have facilitated liverwort speciation, suppressed their extinction, or both. Importantly, shifts in liverwort sexual systems have the opposite effect when compared to angiosperms, leading to contrasting diversification patterns between the two groups. The high prevalence of unisexuality among liverworts suggests, however, a strong selection for sexual dimorphism

    Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation

    Get PDF
    Poaceae (the grasses) is arguably the most successful plant family, in terms of its global occurrence in (almost) all ecosystems with angiosperms, its ecological dominance in many ecosystems, and high species richness. We suggest that the success of grasses is best understood in context of their capacity to colonize, persist, and transform environments (the "Viking syndrome"). This results from combining effective long-distance dispersal, efficacious establishment biology, ecological flexibility, resilience to disturbance and the capacity to modify environments by changing the nature of fire and mammalian herbivory. We identify a diverse set of functional traits linked to dispersal, establishment and competitive abilities. Enhanced long-distance dispersal is determined by anemochory, epizoochory and endozoochory and is facilitated via the spikelet (and especially the awned lemma) which functions as the dispersal unit. Establishment success could be a consequence of the precocious embryo and large starch reserves, which may underpin the extremely short generation times in grasses. Post-establishment genetic bottlenecks may be mitigated by wind pollination and the widespread occurrence of polyploidy, in combination with gametic self-incompatibility. The ecological competitiveness of grasses is corroborated by their dominance across the range of environmental extremes tolerated by angiosperms, facilitated by both C3and C4photosynthesis, well-developed frost tolerance in several clades, and a sympodial growth form that enabled the evolution of both annual and long-lived life forms. Finally, absence of investment in wood (except in bamboos), and the presence of persistent buds at or below ground level, provides tolerance of repeated defoliation (whether by fire, frost, drought or herbivores). Biotic modification of environments via feedbacks with herbivory or fire reinforce grass dominance leading to open ecosystems. Grasses can be both palatable and productive, fostering high biomass and diversity of mammalian herbivores. Many grasses have a suite of architectural and functional traits that facilitate frequent fire, including a tufted growth form, and tannin-like substances in leaves which slow decomposition. We mapped these traits over the phylogeny of the Poales, spanning the grasses and their relatives, and demonstrated the accumulation of traits since monocots originated in the mid-Cretaceous. Although the sympodial growth form is a monocot trait, tillering resulting in the tufted growth form most likely evolved within the grasses. Similarly, although an ovary apparently constructed of a single carpel evolved in the most recent grass ancestor, spikelets and the awned lemma dispersal units evolved within the grasses. Frost tolerance and C4photosynthesis evolved relatively late (late Palaeogene), and the last significant trait to evolve was probably the production of tannins, associated with pyrophytic savannas. This fits palaeobotanical data, suggesting several phases in the grass success story: from a late Cretaceous origin, to occasional tropical grassland patches in the later Palaeogene, to extensive C3grassy woodlands in the early-middle Miocene, to the dramatic expansion of the tropical C4grass savannas and grasslands in the Pliocene, and the C3steppe grasslands during the Pleistocene glacial periods. Modern grasslands depend heavily on strongly seasonal climates, making them sensitive to climate change
    • 

    corecore