227 research outputs found

    L’image de mode au service du sujet fĂ©minin, vers une nouvelle mascarade ?

    Get PDF
    Cette recherche analyse les reprĂ©sentations du genre dans les sĂ©ries mode de la presse magazine fĂ©minine. Prenant pour repĂšres thĂ©oriques les sociologies du corps et de la mode ; ces travaux convoquent des mĂ©thodologies empruntĂ©es aux sciences de l’information et de la communication pour l’étude des dispositifs mĂ©diatiques. Ils interrogent les procĂ©dĂ©s de dĂ©figement des stĂ©rĂ©otypes fĂ©minins, et mettent au jour une pluralitĂ© de reprĂ©sentations contournant les attentes normatives concernant l’expression de la fĂ©minitĂ©. L’interaction entre corps, vĂȘtements et contexte dans l’imagerie de la mode tĂ©moigne d’une rĂ©appropriation du langage du corps par les modĂšles fĂ©minins, manipulant une nouvelle mascarade.This research examines representations of gender in the fashion pages of women’s magazines. With reference to the sociology of fashion and of the body, this work primarily uses methodologies drawn from the field of media studies and communication science to examine the process through which female stereotypes are broken, exposing a plurality of representations and challenging the normative expectations for the expression of femininity. The interaction between body, clothes, and context in fashion pictures shows a re-appropriation of discourses of the body by female models, leading to a new deception

    Le stéréotypage médiatique du genre féminin

    Get PDF
    Cet article a pour vocation d’ouvrir une nouvelle perspective quant aux fonctions du procĂ©dĂ© de stĂ©rĂ©otypage dans les messages mĂ©diatiques Ă  l’adresse d’un public fĂ©minin. Mobilisant la sĂ©miologie des indices pour produire une Ă©tude en production des images de mode prĂ©sentĂ©es dans trois titres de presse magazine fĂ©minine française, cette analyse tend Ă  introduire le rĂŽle d’amorce du stĂ©rĂ©otype dans le contrat de lectorat et propose son utilisation stratĂ©gique, non plus pour une Ă©nonciation aliĂ©nante quant aux reprĂ©sentations du genre mais pour une nĂ©gociation du genre mettant en scĂšne une nouvelle forme de mascarade.Cet article a pour vocation d’ouvrir une nouvelle perspective quant aux fonctions du procĂ©dĂ© de stĂ©rĂ©otypage dans les messages mĂ©diatiques Ă  l’adresse d’un public fĂ©minin. Mobilisant la sĂ©miologie des indices pour produire une Ă©tude en production des images de mode prĂ©sentĂ©es dans trois titres de presse magazine fĂ©minine française, cette analyse tend Ă  introduire le rĂŽle d’amorce du stĂ©rĂ©otype dans le contrat de lectorat et propose son utilisation stratĂ©gique, non plus pour une Ă©nonciation aliĂ©nante quant aux reprĂ©sentations du genre mais pour une nĂ©gociation du genre mettant en scĂšne une nouvelle forme de mascarade

    Fashion pictures and women pictures in French women magazine: normatives parades or strategic masquerade?

    Get PDF
    This article proposes to study the fashion pictures within a representative sample of French women magazines. Based on the method of “sĂ©miologie des indices”, used to analyze a corpus of woman’s body and fashion staged, this paper addresses the issue of new functions granted to the stereotyping process. Starting to the assumption of a contract between audience and media, this analysis shows that the gender stereotype may be prescribed, up to a caricature of the womanhood, to the female readers identified as co-producers of the media discourse. Demonstrating both the co-existence of a plurality of gender representations in its pictures and their variability, this work proposes the concept of strategic masquerade to apprehend the possible new functions for the process of gender stereotyping in media

    A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins

    Get PDF
    Antivenoms developed from the plasma of hyperimmunized animals are the only effective treatment available against snakebite envenomation but shortage of supply contributes to the high morbidity and mortality toll of this tropical disease. We describe a synthetic biology approach to affordable and cost-effective antivenom production based on plant-made recombinant polyclonal antibodies (termed pluribodies). The strategy takes advantage of virus superinfection exclusion to induce the formation of somatic expression mosaics in agroinfiltrated plants, which enables the expression of complex antibody repertoires in a highly reproducible manner. Pluribodies developed using toxin-binding genetic information captured from peripheral blood lymphocytes of hyperimmunized camels recapitulated the overall binding activity of the immune response. Furthermore, an improved plant-made antivenom (plantivenom) was formulated using an in vitro selected pluribody against Bothrops asper snake venom toxins and has been shown to neutralize a wide range of toxin activities and provide protection against lethal venom doses in mice.Fil: Julve Parreño, Jose Manuel. Universidad Politécnica de Valencia; EspañaFil: Huet, Estefanía. Universidad Politécnica de Valencia; EspañaFil: Fernåndez del Carmen, Asun. Universidad Politécnica de Valencia; EspañaFil: Segura, Alvaro. Universidad de Costa Rica; Costa RicaFil: Venturi, Micol. Universidad Politécnica de Valencia; EspañaFil: Gandía, Antoni. Universidad Politécnica de Valencia; EspañaFil: Pan, Wei-Song. Universidad Politécnica de Valencia; EspañaFil: Albaladejo, Irene. Universidad Politécnica de Valencia; EspañaFil: Forment, Javier. Universidad Politécnica de Valencia; EspañaFil: Pla, Davinia. Instituto de Biomedicina de Valencia; EspañaFil: Wigdorovitz, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Calvete, Juan J.. Instituto de Biomedicina de Valencia; EspañaFil: Gutiérrez, Carlos. Universidad de Las Palmas de Gran Canaria; EspañaFil: Gutiérrez, José María. Universidad de Costa Rica; Costa RicaFil: Granell, Antonio. Universidad Politécnica de Valencia; EspañaFil: Orzåez, Diego. Universidad Politécnica de Valencia; Españ

    A One Pot, One Step, Precision Cloning Method with High Throughput Capability

    Get PDF
    Current cloning technologies based on site-specific recombination are efficient, simple to use, and flexible, but have the drawback of leaving recombination site sequences in the final construct, adding an extra 8 to 13 amino acids to the expressed protein. We have devised a simple and rapid subcloning strategy to transfer any DNA fragment of interest from an entry clone into an expression vector, without this shortcoming. The strategy is based on the use of type IIs restriction enzymes, which cut outside of their recognition sequence. With proper design of the cleavage sites, two fragments cut by type IIs restriction enzymes can be ligated into a product lacking the original restriction site. Based on this property, a cloning strategy called ‘Golden Gate’ cloning was devised that allows to obtain in one tube and one step close to one hundred percent correct recombinant plasmids after just a 5 minute restriction-ligation. This method is therefore as efficient as currently used recombination-based cloning technologies but yields recombinant plasmids that do not contain unwanted sequences in the final construct, thus providing precision for this fundamental process of genetic manipulation

    Engineering Betalain Biosynthesis in Tomato for High Level Betanin Production in Fruits

    Get PDF
    Betalains are pigments found in plants of the Caryophyllales order, and include the red-purple betacyanins and the yellow-orange betaxanthins. The red pigment from red beets, betanin, is made from tyrosine by a biosynthetic pathway that consists of a cytochrome P450, a L-DOPA dioxygenase, and a glucosyltransferase. The entire pathway was recently reconstituted in plants that do not make betalains naturally including potato and tomato plants. The amount of betanin produced in these plants was however not as high as in red beets. It was recently shown that a plastidic arogenate dehydrogenase gene involved in biosynthesis of tyrosine in plants is duplicated in Beta vulgaris and other betalain-producing plants, and that one of the two encoded enzymes, BvADHα, has relaxed feedback inhibition by tyrosine, contributing to the high amount of betanin found in red beets. We have reconstituted the complete betanin biosynthetic pathway in tomato plants with or without a BvADHα gene, and with all genes expressed under control of a fruit-specific promoter. The plants obtained with a construct containing BvADHα produced betanin at a higher level than plants obtained with a construct lacking this gene. These results show that use of BvADHα can be useful for high level production of betalains in heterologous hosts. Unlike red beets that produce both betacyanins and betaxanthins, the transformed tomatoes produced betacyanins only, conferring a bright purple-fuschia color to the tomato juice

    N-Glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans

    Get PDF
    Glycoengineering is increasingly being recognized as a powerful tool to generate recombinant glycoproteins with a customized N-glycosylation pattern. Here, we demonstrate the modulation of the plant glycosylation pathway toward the formation of human-type bisected and branched complex N-glycans. Glycoengineered Nicotiana benthamiana lacking plant-specific N-glycosylation (i.e. ÎČ1,2-xylose and core α1,3-fucose) was used to transiently express human erythropoietin (hEPO) and human transferrin (hTF) together with modified versions of human ÎČ1,4-mannosyl-ÎČ1,4-N-acetylglucosaminyltransferase (GnTIII), α1,3-mannosyl-ÎČ1,4-N-acetylglucosaminyltransferase (GnTIV) and α1,6-mannosyl-ÎČ1,6-N-acetylglucosaminyltransferase (GnTV). hEPO was expressed as a fusion to the IgG-Fc domain (EPO-Fc) and purified via protein A affinity chromatography. Recombinant hTF was isolated from the intracellular fluid of infiltrated plant leaves. Mass spectrometry-based N-glycan analysis of hEPO and hTF revealed the quantitative formation of bisected (GnGnbi) and tri- as well as tetraantennary complex N-glycans (Gn[GnGn], [GnGn]Gn and [GnGn][GnGn]). Co-expression of GnTIII together with GnTIV and GnTV resulted in the efficient generation of bisected tetraantennary complex N-glycans. Our results show the generation of recombinant proteins with human-type N-glycosylation at great uniformity. The strategy described here provides a robust and straightforward method for producing mammalian-type N-linked glycans of defined structures on recombinant glycoproteins, which can advance glycoprotein research and accelerate the development of protein-based therapeutics

    A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants

    Get PDF
    "This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission."[EN] Potato virus Y (PVY) is a major threat to the cultivation of potato and other solanaceous plants. By inserting a cDNA coding for the Antirrhinum majus Rosea1 transcription factor into a PVY infectious clone, we created a biotechnological tool (PVY-Ros1) that allows infection by this relevant plant virus to be tracked by the naked eye with no need for complex instrumentation. Rosea1 is an MYB-type transcription factor whose expression activates the biosynthesis of anthocyanin pigments in a dose-specific and cell-autonomous manner. Our experiments showed that the mechanical inoculation of solanaceous plants with PVY-Ros1 induced the formation of red infection foci in inoculated tissue and solid dark red pigmentation in systemically infected tissue, which allows disease progression to be easily monitored. By using silver nanoparticles, a nanomaterial with exciting antimicrobial properties, we proved the benefits of PVY-Ros1 to analyze novel antiviral treatments in plants. PVY-Ros1 was also helpful for visually monitoring the virus transmission process by an aphid vector. Most importantly, the anthocyanin analysis of infected tobacco tissues demonstrated that PVY-Ros1 is an excellent biotechnological tool for molecular farming because it induces the accumulation of larger amounts of anthocyanins, antioxidant compounds of nutritional, pharmaceutical and industrial interest, than those that naturally accumulate in some fruits and vegetables well known for their high anthocyanin content. Hence these results support the notion that the virus-mediated expression of regulatory factors and enzymes in plants facilitates easy quick plant metabolism engineering.This research was supported by grants BIO2014-54269-R and AGL2013-49919-EXP to J-AD and AGL2013-42537-R to J-JL-M from the Ministerio de Economia y Competitividad (MINECO, co-financed FEDER funds), Spain. MM was supported by the Erasmus Mundus Scholarship-ACTION 2 WELCOME program of the European Commission. Research in CRAG is supported in part by CERCA (Generalitat de Catalunya) and by "Severo Ochoa Programme for Centres of Excellence in R&D" 2016-2019 (SEV-2015-0533).Cordero, T.; Mohamed, M.; Lopez Moya, J.; Daros Arnau, JA. (2017). A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants. Frontiers in Microbiology. 8:1-11. https://doi.org/10.3389/fmicb.2017.00611S1118Abdel-Hafez, S. I. I., Nafady, N. A., Abdel-Rahim, I. R., Shaltout, A. M., DarĂČs, J.-A., & Mohamed, M. A. (2016). Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech, 6(2). doi:10.1007/s13205-016-0515-6Allan, A. C., Hellens, R. P., & Laing, W. A. (2008). MYB transcription factors that colour our fruit. Trends in Plant Science, 13(3), 99-102. doi:10.1016/j.tplants.2007.11.012An, C. H., Lee, K.-W., Lee, S.-H., Jeong, Y. J., Woo, S. G., Chun, H., 
 Kim, C. Y. (2015). Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco. Plant Physiology and Biochemistry, 89, 1-10. doi:10.1016/j.plaphy.2015.02.002Atreya, P. L., Lopez-Moya, J. J., Chu, M., Atreya, C. D., & Pirone, T. P. (1995). Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. Journal of General Virology, 76(2), 265-270. doi:10.1099/0022-1317-76-2-265Baulcombe, D. C., Chapman, S., & Cruz, S. (1995). Jellyfish green fluorescent protein as a reporter for virus infections. The Plant Journal, 7(6), 1045-1053. doi:10.1046/j.1365-313x.1995.07061045.xBedoya, L., MartĂ­nez, F., Rubio, L., & DarĂČs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006Bedoya, L. C., & DarĂČs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004Bedoya, L. C., MartĂ­nez, F., OrzĂĄez, D., & DarĂČs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922Boyer, J.-C., & Haenni, A.-L. (1994). Infectious Transcripts and cDNA Clones of RNA Viruses. Virology, 198(2), 415-426. doi:10.1006/viro.1994.1053Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., & Prasher, D. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802-805. doi:10.1126/science.8303295Cordero, T., CerdĂĄn, L., Carbonell, A., Katsarou, K., Kalantidis, K., & DarĂČs, J.-A. (2017). Dicer-Like 4 Is Involved in Restricting the Systemic Movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe InteractionsÂź, 30(1), 63-71. doi:10.1094/mpmi-11-16-0239-rDolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00453Engler, C., & Marillonnet, S. (2013). Golden Gate Cloning. Methods in Molecular Biology, 119-131. doi:10.1007/978-1-62703-764-8_9FRENCH, R., JANDA, M., & AHLQUIST, P. (1986). Bacterial Gene Inserted in an Engineered RNA Virus: Efficient Expression in Monocotyledonous Plant Cells. Science, 231(4743), 1294-1297. doi:10.1126/science.231.4743.1294Gibbs, A., & Ohshima, K. (2010). Potyviruses and the Digital Revolution. Annual Review of Phytopathology, 48(1), 205-223. doi:10.1146/annurev-phyto-073009-114404Johansen, I. E. (1996). Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proceedings of the National Academy of Sciences, 93(22), 12400-12405. doi:10.1073/pnas.93.22.12400Joshi, R. L., Joshi, V., & Ow, D. W. (1990). BSMV genome mediated expression of a foreign gene in dicot and monocot plant cells. The EMBO Journal, 9(9), 2663-2669. doi:10.1002/j.1460-2075.1990.tb07451.xKarasev, A. V., & Gray, S. M. (2013). Continuous and Emerging Challenges of Potato virus Y in Potato. Annual Review of Phytopathology, 51(1), 571-586. doi:10.1146/annurev-phyto-082712-102332Kelloniemi, J., MĂ€kinen, K., & Valkonen, J. P. T. (2008). Three heterologous proteins simultaneously expressed from a chimeric potyvirus: Infectivity, stability and the correlation of genome and virion lengths. Virus Research, 135(2), 282-291. doi:10.1016/j.virusres.2008.04.006Krenz, B., Bronikowski, A., Lu, X., Ziebell, H., Thompson, J. R., & Perry, K. L. (2015). Visual monitoring of Cucumber mosaic virus infection in Nicotiana benthamiana following transmission by the aphid vector Myzus persicae. Journal of General Virology, 96(9), 2904-2912. doi:10.1099/vir.0.000185Lara, H. H., Ixtepan-Turrent, L., Garza Treviño, E. N., & Singh, D. K. (2011). Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. Journal of Nanobiotechnology, 9(1), 38. doi:10.1186/1477-3155-9-38LĂłpez-Moya, J. J., & Garcı́a, J. A. (2000). Construction of a stable and highly infectious intron-containing cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99-107. doi:10.1016/s0168-1702(00)00161-1Majer, E., Llorente, B., RodrĂ­guez-ConcepciĂłn, M., & DarĂČs, J.-A. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports, 7(1). doi:10.1038/srep41645Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23(6), 718-723. doi:10.1038/nbt1094Mishra, S., & Singh, H. B. (2014). Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology, 99(3), 1097-1107. doi:10.1007/s00253-014-6296-0Nie, B., Singh, M., Sullivan, A., Singh, R. P., Xie, C., & Nie, X. (2011). Recognition and Molecular Discrimination of Severe and Mild PVYO Variants of Potato virus Y in Potato in New Brunswick, Canada. Plant Disease, 95(2), 113-119. doi:10.1094/pdis-04-10-0257Olspert, A., Chung, B. Y., Atkins, J. F., Carr, J. P., & Firth, A. E. (2015). Transcriptional slippage in the positive‐sense RNA virus family Potyviridae. EMBO reports, 16(8), 995-1004. doi:10.15252/embr.201540509Passeri, V., Koes, R., & Quattrocchio, F. M. (2016). New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00153Quenouille, J., Vassilakos, N., & Moury, B. (2013). Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Molecular Plant Pathology, 14(5), 439-452. doi:10.1111/mpp.12024Revers, F., & GarcĂ­a, J. A. (2015). Molecular Biology of Potyviruses. Advances in Virus Research, 101-199. doi:10.1016/bs.aivir.2014.11.006Rodamilans, B., Valli, A., Mingot, A., San LeĂłn, D., Baulcombe, D., LĂłpez-Moya, J. J., & GarcĂ­a, J. A. (2015). RNA Polymerase Slippage as a Mechanism for the Production of Frameshift Gene Products in Plant Viruses of the Potyviridae Family. Journal of Virology, 89(13), 6965-6967. doi:10.1128/jvi.00337-15Rodriguez, E. A., Campbell, R. E., Lin, J. Y., Lin, M. Z., Miyawaki, A., Palmer, A. E., 
 Tsien, R. Y. (2017). The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends in Biochemical Sciences, 42(2), 111-129. doi:10.1016/j.tibs.2016.09.010Rupar, M., Faurez, F., Tribodet, M., GutiĂ©rrez-Aguirre, I., Delaunay, A., Glais, L., 
 Ravnikar, M. (2015). Fluorescently Tagged Potato virus Y: A Versatile Tool for Functional Analysis of Plant-Virus Interactions. Molecular Plant-Microbe InteractionsÂź, 28(7), 739-750. doi:10.1094/mpmi-07-14-0218-taSaxena, P., Hsieh, Y.-C., Alvarado, V. Y., Sainsbury, F., Saunders, K., Lomonossoff, G. P., & Scholthof, H. B. (2010). Improved foreign gene expression in plants using a virus-encoded suppressor of RNA silencing modified to be developmentally harmless. Plant Biotechnology Journal, 9(6), 703-712. doi:10.1111/j.1467-7652.2010.00574.xSCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., 
 FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.xThole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation. Plant Physiology, 145(4), 1211-1219. doi:10.1104/pp.107.108563Tilsner, J., & Oparka, K. J. (2010). Tracking the green invaders: advances in imaging virus infection in plants. Biochemical Journal, 430(1), 21-37. doi:10.1042/bj20100372Zhang, Y., Butelli, E., & Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81-90. doi:10.1016/j.pbi.2014.05.011Zhao, X., Yuan, Z., Fang, Y., Yin, Y., & Feng, L. (2012). Characterization and evaluation of major anthocyanins in pomegranate (Punica granatum L.) peel of different cultivars and their development phases. European Food Research and Technology, 236(1), 109-117. doi:10.1007/s00217-012-1869-

    Evolution of Plant-Made Pharmaceuticals

    Get PDF
    The science and policy of pharmaceuticals produced and/or delivered by plants has evolved over the past twenty-one years from a backyard remedy to regulated, purified products. After seemingly frozen at Phase I human clinical trials with six orally delivered plant-made vaccines not progressing past this stage over seven years, plant-made pharmaceuticals have made a breakthrough with several purified plant-based products advancing to Phase II trials and beyond. Though fraught with the usual difficulties of pharmaceutical development, pharmaceuticals made by plants have achieved pertinent milestones albeit slowly compared to other pharmaceutical production systems and are now at the cusp of reaching the consumer. Though the current economic climate begs for cautious investment as opposed to trail blazing, it is perhaps a good time to look to the future of plant-made pharmaceutical technology to assist in planning for future developments in order not to slow this technology’s momentum. To encourage continued progress, we highlight the advances made so far by this technology, particularly the change in paradigms, comparing developmental timelines, and summarizing the current status and future possibilities of plant-made pharmaceuticals
    • 

    corecore