141 research outputs found

    Detailed analysis of excited-state systematics in a lattice QCD calculation of gA

    Get PDF
    Excited state contamination remains one of the most challenging sources of systematic uncertainty to control in lattice QCD calculations of nucleon matrix elements and form factors: early time separations are contaminated by excited states and late times suffer from an exponentially bad signal-to-noise problem. High-statistics calculations at large time separations 1 fm are commonly used to combat these issues. In this work, focusing on gA, we explore the alternative strategy of utilizing a large number of relatively low-statistics calculations at short to medium time separations (0.2-1 fm), combined with a multistate analysis. On an ensemble with a pion mass of approximately 310 MeV and a lattice spacing of approximately 0.09 fm, we find this provides a more robust and economical method of quantifying and controlling the excited state systematic uncertainty. A quantitative separation of various types of excited states enables the identification of the transition matrix elements as the dominant contamination. The excited state contamination of the Feynman-Hellmann correlation function is found to reduce to the 1% level at approximately 1 fm while, for the more standard three-point functions, this does not occur until after 2 fm. Critical to our findings is the use of a global minimization, rather than fixing the spectrum from the two-point functions and using them as input to the three-point analysis. We find that the ground state parameters determined in such a global analysis are stable against variations in the excited state model, the number of excited states, and the truncation of early-time or late-time numerical data

    An overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT

    Get PDF
    MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with HI masses from 10^6 to ~10^{11} M_sun, and luminosities from M_R ~ -12 to M_R ~ -22. The sample is selected to uniformly cover the available range in log(M_HI). Our extremely deep observations, down to HI column density limits of well below 10^{18} cm^{-2} - or a few hundred times fainter than the typical HI disks in galaxies - will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modelling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT's capabilities

    SJS/TEN 2019: From Science to Translation

    Get PDF
    Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are potentially life-threatening, immune-mediated adverse reactions characterized by widespread erythema, epidermal necrosis, and detachment of skin and mucosa. Efforts to grow and develop functional international collaborations and a multidisciplinary interactive network focusing on SJS/TEN as an uncommon but high burden disease will be necessary to improve efforts in prevention, early diagnosis and improved acute and long-term management. SJS/TEN 2019: From Science to Translation was a 1.5-day scientific program held April 26-27, 2019, in Vancouver, Canada. The meeting successfully engaged clinicians, researchers, and patients and conducted many productive discussions on research and patient care needs

    Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    Get PDF
    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health

    FTO genetic variants, dietary intake and body mass index: insights from 177 330 individuals

    Get PDF
    FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177 330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m2, P = 1.9 × 10−105), and all participants (0.30 [0.30, 0.35] kg/m2, P = 3.6 × 10−107). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10−16), and relative weak associations with lower total energy intake (−6.4 [−10.1, −2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (−0.07 [−0.11, −0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10−9) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposit

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe

    ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma a

    LADUMA: looking at the distant universe with the MeerKAT array

    Get PDF
    The cosmic evolution of galaxies’ neutral atomic gas content is a major science driver for the Square Kilometre Array (SKA), as well as for its South African (MeerKAT) and Australian (ASKAP) precursors. Among the H I large survey programs (LSPs) planned for ASKAP and MeerKAT, the deepest and narrowest tier of the “wedding cake” will be defined by the combined L-band+UHF-band Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey, which will probe H I in emission within a single “cosmic vuvuzela” that extends to z = 1.4, when the universe was only a third of its present age. Through a combination of individual and stacked detections (the latter relying on extensive multi-wavelength studies of the survey’s target field), LADUMA will study the redshift evolution of the baryonic Tully–Fisher relation and the cosmic H I density, the variation of the H I mass function with redshift and environment, and the connection between H I content and galaxies’ stellar properties (mass, age, etc.). The survey will also build a sample of OH megamaser detections that can be used to trace the cosmic merger history. This proceedings contribution provides a brief introduction to the survey, its scientific aims, and its technical implementation, deferring a more complete discussion for a future article after the implications of a recent review of MeerKAT LSP project plans are fully worked out
    corecore