158 research outputs found
Confidence set of putative quantitative trait loci in whole genome scans with application to the Genetic Analysis Workshop 17 simulated data
As genetic maps become more highly dense, the ability to sufficiently localize putative disease loci becomes an achievable goal. This has prompted an increased interest in methods for constructing confidence intervals for the location of variants that contribute to a trait. Such intervals are important because, by reducing the number of candidate loci, they can help in the design of cost-effective and time-efficient follow-up studies. We introduce a new approach that can be used in whole-genome scans to obtain a confidence set of loci that contribute at least a predetermined percentage h to the overall genetic variation of a quantitative phenotype. The method is developed in the framework of generalized linear mixed models and can accommodate families of arbitrary size and structure. We apply our method to the Genetic Analysis Workshop 17 simulated data where we scan chromosomes 6, 15, 20, 21, and 22 to uncover loci regulating the simulated phenotype Q2. For the analyses we had prior knowledge of the simulation model used to generate the phenotype
Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes
PublishedJournal ArticleResearch Support, Non-U.S. Gov'tThe mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.
OBJECTIVE: Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS: Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS: Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS: Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations
Irf4 is a positional and functional candidate gene for the control of serum IgM levels in the mouse
Natural IgM are involved in numerous immunological functions but the genetic factors that control the homeostasis of its
secretion and upholding remain unknown. Prompted by the finding that C57BL/6 mice had significantly lower serum levels of
IgM when compared with BALB/c mice, we performed a genome-wide screen and found that the level of serum IgM was
controlled by a QTL on chromosome 13 reaching the highest level of association at marker D13Mit266 (LOD score¼3.54).
This locus was named IgMSC1 and covered a region encompassing the interferon-regulatory factor 4 gene (Irf4). The number
of splenic mature B cells in C57BL/6 did not differ from BALB/c mice but we found that low serum levels of IgM in C57BL/6 mice
correlated with lower frequency of IgM-secreting cells in the spleen and in the peritoneal cavity. These results suggested that
C57BL/6 mice have lower efficiency in late B-cell maturation, a process that is highly impaired in Irf4 knockout mice. In fact, we
also found reduced Irf4 gene expression in B cells of C57BL/6 mice. Thus, we propose Irf4 as a candidate for the IgMSC1
locus, which controls IgM homeostatic levels at the level of B-cell terminal differentiation
Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe
A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
This is the final version of the article. Available from the publisher via the DOI in this record.Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways
Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption.
Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10-8).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee
LD-Spline: Mapping SNPs on genotyping platforms to genomic regions using patterns of linkage disequilibrium
<p>Abstract</p> <p>Background</p> <p>Gene-centric analysis tools for genome-wide association study data are being developed both to annotate single locus statistics and to prioritize or group single nucleotide polymorphisms (SNPs) prior to analysis. These approaches require knowledge about the relationships between SNPs on a genotyping platform and genes in the human genome. SNPs in the genome can represent broader genomic regions via linkage disequilibrium (LD), and population-specific patterns of LD can be exploited to generate a data-driven map of SNPs to genes.</p> <p>Methods</p> <p>In this study, we implemented LD-Spline, a database routine that defines the genomic boundaries a particular SNP represents using linkage disequilibrium statistics from the International HapMap Project. We compared the LD-Spline haplotype block partitioning approach to that of the four gamete rule and the Gabriel et al. approach using simulated data; in addition, we processed two commonly used genome-wide association study platforms.</p> <p>Results</p> <p>We illustrate that LD-Spline performs comparably to the four-gamete rule and the Gabriel et al. approach; however as a SNP-centric approach LD-Spline has the added benefit of systematically identifying a genomic boundary for each SNP, where the global block partitioning approaches may falter due to sampling variation in LD statistics.</p> <p>Conclusion</p> <p>LD-Spline is an integrated database routine that quickly and effectively defines the genomic region marked by a SNP using linkage disequilibrium, with a SNP-centric block definition algorithm.</p
Genome-wide association meta-analysis of fish and EPA+DHA consumption in 17 US and European cohorts
BackgroundRegular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences.ObjectiveTo identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption.DesignWe conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts.ResultsHeritability estimates for fish and EPA+DHA consumption ranged from 0.13–0.24 and 0.12–0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (FreqA = 0.015) was associated with 0.029 servings/day (~1 serving/month) lower fish consumption (P = 1.96x10-8). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10-7). Post-hoc calculations demonstrated 95% statistical power to detect a genetic variant associated with effect size of 0.05% for fish and 0.08% for EPA+DHA.ConclusionsThese novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.</div
- …
