3,318 research outputs found

    Top Quarks at Photon Colliders

    Get PDF
    A review of results on top quark physics expected at the Photon Linear Colliders is presented.Comment: 12 pages, 10 figures, talk given at the International Workshop on High Energy Photon Colliders, 14-17 June 2000, Hamburg, German

    General Analysis of Single Top Production and W Helicity in Top Decay

    Get PDF
    We provide a framework for the analysis of the W boson helicity in the decay of the top quark that is based on a general effective tbW coupling. Four independent coupling coefficients can be uniquely determined by the fractions of longitudinal and transverse W boson polarizations as well as the single top production rates for the t-channel and the s-channel processes. The knowledge of these coefficients can be used to discriminate models of electroweak symmetry breaking.Comment: Typo on Eqs. 5 and 6 correcte

    Integrable models and quantum spin ladders: comparison between theory and experiment for the strong coupling ladder compounds

    Full text link
    (abbreviated) This article considers recent advances in the investigation of the thermal and magnetic properties of integrable spin ladder models and their applicability to the physics of real compounds. The ground state properties of the integrable two-leg spin-1/2 and the mixed spin-(1/2,1) ladder models at zero temperature are analyzed by means of the Thermodynamic Bethe Ansatz. Solving the TBA equations yields exact results for the critical fields and critical behaviour. The thermal and magnetic properties of the models are investigated in terms of the recently introduced High Temperature Expansion method, which is discussed in detail. It is shown that in the strong coupling limit the integrable spin-1/2 ladder model exhibits three quantum phases: (i) a gapped phase in the regime H<Hc1H<H_{c1}, (ii) a fully polarised phase for H>Hc2H>H_{c2}, and (iii) a Luttinger liquid magnetic phase in the regime Hc1<H<Hc2H_{c1}<H<H_{c2}. The critical behaviour in the vicinity of the critical points is of the Pokrovsky-Talapov type. The temperature-dependent thermal and magnetic properties are directly evaluated from the exact free energy expression and compared to known experimental results for a range of strong coupling ladder compounds. Similar analysis of the mixed spin-(1/2,1) ladder model reveals a rich phase diagram, with a 1/3 and a full saturation magnetisation plateau within the strong antiferromagnetic rung coupling regime. For weak rung coupling, the fractional magnetisation plateau is diminished and a new quantum phase transition occurs. The phase diagram can be directly deduced from the magnetisation curve obtained from the exact result derived from the HTE. The thermodynamics of the spin-orbital model with different single-ion anisotropies is also investigated.Comment: 90 pages, 33 figures, extensive revisio

    Radiative Corrections to W^+W^- \to W^+W^- in the Electroweak Standard Model

    Get PDF
    The cross-section for W^+W^- \to W^+W^- with arbitrarily polarized W bosons is calculated within the Electroweak Standard Model including the complete virtual and soft-photonic O(alpha) corrections. We show the numerical importance of the radiative corrections for the dominating polarized cross-sections and for the unpolarized cross-section. The numerical accuracy of the equivalence theorem is investigated in O(alpha) by comparing the cross-section for purely longitudinal W bosons obtained from the equivalence theorem and from the direct calculation. We point out that the instability of the W boson, which is inherent in the one-loop corrections, prevents a consistent calculation of radiative corrections to the scattering of on-real-mass-shell longitudinal W bosons beyond O(alpha).Comment: 24 pages, LaTeX, uses axodraw, epsfig. Statement clarifie

    Hadron Collider Signatures for New Interactions of Top and Bottom Quarks

    Full text link
    One of the main goals for hadron colliders is the study of the properties of the third generation quarks. We study the signatures for new TeV resonances that couple to top or bottom quarks both at the Tevatron Run II and at the LHC. We find that in the simplest production processes of Drell-Yan type at the Tevatron, the signals are overwhelmed by QCD backgrounds. We also find that it is possible to study these resonances when they are produced in association with a pair of heavy quarks or in association with a single top at the LHC.In particular, with an integrated luminosity of 300 fb1^{-1} at the LHC, it is possible to probe resonance masses up to around 2 TeV.Comment: 24 pages, 15 figures, Minor corrections, version to appear in Phys. Rev.

    The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery

    Full text link
    The long awaited discovery of a new light scalar at the LHC opens up a new era of studies of the Higgs sector in the SM and its extensions. In this paper we discuss the consequences of the observation of a light Higgs boson with the mass and rates reported by the ATLAS and CMS collaborations on the parameter space of the phenomenological MSSM, including also the so far unsuccessful LHC searches for the heavier Higgs bosons and supersymmetric particle partners in missing transverse momentum as well as the constraints from B physics and dark matter. We explore the various regimes of the MSSM Higgs sector depending on the parameters MA and tan beta and show that only two of them are still allowed by all present experimental constraints: the decoupling regime where there is only one light and standard--like Higgs boson and the supersymmetric regime in which there are light supersymmetric particle partners affecting the decay properties of the Higgs boson, in particular its di-photon and invisible decays.Comment: 21 pages, 9 figures v2 - Discussion of the impact of LHC data extended, scan statistics increased, a few figures added and typos correcte

    tbWt \to b W in NonCommutative Standard Model

    Full text link
    We study the top quark decay to b quark and W boson in the NonCommutative Standard Model (NCSM). The lowest contribution to the decay comes from the terms quadratic in the matrix describing the noncommutative (NC) effects while the linear term is seen to identically vanish because of symmetry. The NC effects are found to be significant only for low values of the NC characteristic scale.Comment: 11 page Latex file containing 2 eps figures (redrawn). More discussion included. To appear in PR

    Light Stop Decay in the MSSM with Minimal Flavour Violation

    Full text link
    In supersymmetric scenarios with a light stop particle t~1\tilde{t}_1 and a small mass difference to the lightest supersymmetric particle (LSP) assumed to be the lightest neutralino, the flavour changing neutral current decay t~1cχ~10\tilde{t}_1 \to c \tilde{\chi}_1^0 can be the dominant decay channel and can exceed the four-body stop decay for certain parameter values. In the framework of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing long stop lifetimes. Stop decay length measurements at the LHC can then be exploited to test models with minimal flavour breaking through Standard Model Yukawa couplings. The decay width has been given some time ago by an approximate formula, which takes into account the leading logarithms of the MFV scale. In this paper we calculate the exact one-loop decay width in the framework of MFV. The comparison with the approximate result exhibits deviations of the order of 10% for large MFV scales due to the neglected non-logarithmic terms in the approximate decay formula. The difference in the branching ratios is negligible. The large logarithms have to be resummed. The resummation is performed by the solution of the renormalization group equations. The comparison of the exact one-loop result and the tree level flavour changing neutral current decay, which incorporates the resummed logarithms, demonstrates that the resummation effects are important and should be taken into account.Comment: 29 page

    Supersymmetric effects in top quark decay into polarized W-boson

    Full text link
    We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal or transverse W-boson. The corrections are presented in terms of the longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio \Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1% in magnitude and they tend to have opposite signs. The corrections to the total width \Gamma(t-->W b) are also presented for comparison with the existing results in the literature. We find that our SUSY-EW corrections to the total width differ significantly from previous studies: the previous studies give a large correction of more than 10% in magnitude for a large part of the parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added

    Higgs Boson Theory and Phenomenology

    Get PDF
    Precision electroweak data presently favors a weakly-coupled Higgs sector as the mechanism responsible for electroweak symmetry breaking. Low-energy supersymmetry provides a natural framework for weakly-coupled elementary scalars. In this review, we summarize the theoretical properties of the Standard Model (SM) Higgs boson and the Higgs sector of the minimal supersymmetric extension of the Standard Model (MSSM). We then survey the phenomenology of the SM and MSSM Higgs bosons at the Tevatron, LHC and a future e+e- linear collider. We focus on the Higgs discovery potential of present and future colliders and stress the importance of precision measurements of Higgs boson properties.Comment: 90 pages, 31 figures. Revised version. To be published in Progress in Particle and Nuclear Physics. This paper with higher resolution figures can be found at http://scipp.ucsc.edu/~haber/higgsreview/higgsrev.p
    corecore