In supersymmetric scenarios with a light stop particle t~1 and a
small mass difference to the lightest supersymmetric particle (LSP) assumed to
be the lightest neutralino, the flavour changing neutral current decay
t~1→cχ~10 can be the dominant decay channel and can
exceed the four-body stop decay for certain parameter values. In the framework
of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing
long stop lifetimes. Stop decay length measurements at the LHC can then be
exploited to test models with minimal flavour breaking through Standard Model
Yukawa couplings. The decay width has been given some time ago by an
approximate formula, which takes into account the leading logarithms of the MFV
scale. In this paper we calculate the exact one-loop decay width in the
framework of MFV. The comparison with the approximate result exhibits
deviations of the order of 10% for large MFV scales due to the neglected
non-logarithmic terms in the approximate decay formula. The difference in the
branching ratios is negligible. The large logarithms have to be resummed. The
resummation is performed by the solution of the renormalization group
equations. The comparison of the exact one-loop result and the tree level
flavour changing neutral current decay, which incorporates the resummed
logarithms, demonstrates that the resummation effects are important and should
be taken into account.Comment: 29 page