435 research outputs found

    Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model

    Get PDF
    Explosive volcanism is known to be a leading natural cause of climate change. The second half of the 13th century was likely the most volcanically perturbed half-century of the last 2000 years, although none of the major 13th century eruptions have been clearly attributed to specific volcanoes. This period was in general a time of transition from the relatively warm Medieval period to the colder Little Ice Age, but available proxy records are insufficient on their own to clearly assess whether this transition is associated with volcanism. This context motivates our investigation of the climate system sensitivity to high- and low-latitude volcanism using the fully coupled NCAR Community Climate System Model (CCSM3). We evaluate two sets of ensemble simulations, each containing four volcanic pulses, with the first set representing them as a sequence of tropical eruptions and the second representing eruptions occurring in the mid-high latitudes of both the Northern and Southern hemispheres. The short-term, direct radiative impacts of tropical and high- latitude eruptions include significant cooling over the continents in summer and cooling over regions of increased sea-ice concentration in Northern Hemisphere (NH) winter. A main dynamical impact of moderate tropical eruptions is a winter warming pattern across northern Eurasia. Furthermore, both ensembles show significant reductions in global precipitation, especially in the summer monsoon regions. The most important long-term impact is the cooling of the high-latitude NH produced by multiple tropical eruptions, suggesting that positive feedbacks associated with ice and snow cover could lead to long-term climate cooling in the Arctic

    Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project

    Get PDF
    Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5

    Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation

    Get PDF
    Oxygen isotope speleothem records exhibit coherent variability over the pan-Asian summer monsoon (AM) region. The hydroclimatic representation of these oxygen isotope records for the AM, however, has remained poorly understood. Here, combining an isotope-enabled Earth system model in transient experiments with proxy records, we show that the widespread AM delta O-18(c) signal during the last deglaciation (20 to 11 thousand years ago) is accompanied by a continental-scale, coherent hydroclimate footprint, with spatially opposite signs in rainfall. This footprint is generated as a dynamically coherent response of the AM system primarily to meltwater forcing and secondarily to insolation forcing and is further reinforced by atmospheric teleconnection. Hence, widespread delta O-18(p) depletion in the AM region is accompanied by a northward migration of the westerly jet and enhanced southwesterly monsoon wind, as well as increased rainfall from South Asia (India) to northern China but decreased rainfall in southeast China

    Pliocene and Eocene provide best analogs for near-future climates

    Get PDF
    As the world warms due to rising greenhouse gas concentrations, the Earth system moves toward climate states without societal precedent, challenging adaptation. Past Earth system states offer possible model systems for the warming world of the coming decades. These include the climate states of the Early Eocene (ca. 50 Ma), the Mid-Pliocene (3.3–3.0 Ma), the Last Interglacial (129–116 ka), the Mid-Holocene (6 ka), preindustrial (ca. 1850 CE), and the 20th century. Here, we quantitatively assess the similarity of future projected climate states to these six geohistorical benchmarks using simulations from the Hadley Centre Coupled Model Version 3 (HadCM3), the Goddard Institute for Space Studies Model E2-R (GISS), and the Community Climate System Model, Versions 3 and 4 (CCSM) Earth system models. Under the Representative Concentration Pathway 8.5 (RCP8.5) emission scenario, by 2030 CE, future climates most closely resemble Mid-Pliocene climates, and by 2150 CE, they most closely resemble Eocene climates. Under RCP4.5, climate stabilizes at Pliocene-like conditions by 2040 CE. Pliocene-like and Eocene-like climates emerge first in continental interiors and then expand outward. Geologically novel climates are uncommon in RCP4.5 (<1%) but reach 8.7% of the globe under RCP8.5, characterized by high temperatures and precipitation. Hence, RCP4.5 is roughly equivalent to stabilizing at Pliocene-like climates, while unmitigated emission trajectories, such as RCP8.5, are similar to reversing millions of years of long-term cooling on the scale of a few human generations. Both the emergence of geologically novel climates and the rapid reversion to Eocene-like climates may be outside the range of evolutionary adaptive capacity

    No Consistent Simulated Trends in the Atlantic Meridional Overturning Circulation for the Past 6,000 Years

    Get PDF
    The Atlantic Meridional Overturning Circulation (AMOC) is a key feature of the North Atlantic with global ocean impacts. The AMOC's response to past changes in forcings during the Holocene provides important context for the coming centuries. Here, we investigate AMOC trends using an emerging set of transient simulations using multiple global climate models for the past 6,000 years. Although some models show changes, no consistent trend in overall AMOC strength during the mid-to-late Holocene emerges from the ensemble. We interpret this result to suggest no overall change in AMOC, which fits with our assessment of available proxy reconstructions. The decadal variability of the AMOC does not change in ensemble during the mid- and late-Holocene. There are interesting AMOC changes seen in the early Holocene, but their nature depends a lot on which inputs are used to drive the experiment

    A secondary ionization mass spectrometry calibration of Cibicidoides pachyderma Mg/Ca with temperature

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04009, doi:10.1029/2007GC001620.An evaluation of C. pachyderma Mg/Ca using a new suite of warm water multicores from the Florida Straits shows that the slope of Mg/Ca with temperature is shallower than previously thought. Using secondary ionization mass spectrometry, we have documented that the distribution of magnesium within the polished walls of foraminiferal tests is Gaussian, suggesting that the Mg/Ca in these samples is not affected by the addition of a secondary high-magnesium calcite in the walls. The Mg/Ca within a typical C. pachyderma test varies by about ±20% (1σ/μ · 100), and the variability increases slightly in tests with higher Mg/Ca. The regression of C. pachyderma Mg/Ca with temperature has a slope of 0.13 ± 0.05 mmol mol−1 per °C, indistinguishable from the slope observed in inductively coupled plasma–mass spectrometry measurements from a different subset of the same multicores, but about one half the slope of previously published calibrations. The largest differences between the calibrations comes at the warm water end of the regression, where previously published C. pachyderma Mg/Ca values from Little Bahama Bank are at least 3 mmol mol−1 higher than observed in these new cores. The reasons for this difference are not fully known but are most likely related to diagenesis at Little Bahama Bank.This research was supported by several grants from the National Science Foundation: OCE0096469 to W.B.C. for cruise support to collect the Florida Straits cores; ATM0502428 and OCE0550271 to W. B. C. for support to obtain the Mg/Ca data on the ion probe; and OCE0425522 and OCE0550150 to T. M. for the core top calibration study using ICP-MS

    Modeling the ENSO impact of orbitally induced mean state climate changes

    Get PDF
    The sensitivity of the El Niño–Southern Oscillation (ENSO) phenomenon to changes in the tropical Pacific mean climate is investigated with a coupled atmosphere-ocean-sea ice general circulation model (AOGCM), the Kiel Climate Model (KCM). Different mean climate states are generated by changing the orbital forcing that causes a redistribution of solar energy, which was a major driver of both the Holocene and the Eemian climates. We find that the ENSO amplitude is positively correlated with both the Equatorial Pacific sea surface temperature (SST) and the equatorial zonal SST contrast. The latter is controlled by the upwelling-induced damping of the SST changes in the Eastern Equatorial Pacific (EEP), and by the vertical ocean dynamical heating and zonal heat transport convergence in the Western Equatorial Pacific. The ENSO amplitude also correlates positively with the seasonal SST amplitude in the EEP and negatively with the strength of the easterly Trades over the Equatorial Pacific. However, the ENSO period is rather stable and stays within 3–4 years. Enhanced ENSO amplitude is simulated during the late-Holocene, in agreement with paleoproxy records. The tight positive correlation (r = 0.89) between the ENSO strength and the Western Pacific Warm Pool (WPWP) SST suggests that the latter may provide an indirect measure of the ENSO amplitude from proxy data that cannot explicitly resolve interannual variability. Key Points: - ENSO amplitude enhances as mean SST & west-east SST gradient rise in tropical Pacific - The broad range frequency peaks at periods of 3-4 years over Holocene and Eemian - The Pacific's warm pool SST is a suitable indicator to monitor ENSO variabilit
    corecore