2,081 research outputs found

    Properties of satellite galaxies in the SDSS photometric survey: luminosities, colours and projected number density profiles

    Full text link
    We analyze photometric data in SDSS-DR7 to infer statistical properties of faint satellites associated to isolated bright galaxies (M_r<-20.5) in the redshift range 0.03<z<0.1. The mean projected radial profile shows an excess of companions in the photometric sample around the primaries, with approximately a power law shape that extends up to ~700kpc. Given this overdensity signal, a suitable background subtraction method is used to study the statistical properties of the population of bound satellites, down to magnitude M_r=-14.5, in the projected radial distance range 100 < r_p/kpc < 3 R_{vir}. We have also considered a color cut consistent with the observed colors of spectroscopic satellites in nearby galaxies so that distant redshifted galaxies do not dominate the statistics. We have tested the implementation of this procedure using a mock catalog. We find that the method is effective in reproducing the true projected radial satellite number density profile and luminosity distributions, providing confidence in the results derived from SDSS data. The spatial extent of satellites is larger for bright, red primaries. Also, we find a larger spatial distribution of blue satellites. For the different samples analyzed, we derive the average number of satellites and their luminosity distributions down to M_r=-14.5. The mean number of satellites depends very strongly on host luminosity. Bright primaries (M_r<-21.5) host on average ~6 satellites with M_r<-14.5, while primaries with -21.5<M_r<-20.5 have less than 1 satellite per host. We provide Schechter function fits to the luminosity distributions of satellite galaxies with faint-end slopes -1.3+/-0.2. This shows that satellites of bright primaries lack an excess population of faint objects, in agreement with the results in the Milky Way and nearby galaxies.Comment: 14 pages, 13 figures. Accepted for publication in Astronomical Journa

    A List of Galaxies for Gravitational Wave Searches

    Full text link
    We present a list of galaxies within 100 Mpc, which we call the Gravitational Wave Galaxy Catalogue (GWGC), that is currently being used in follow-up searches of electromagnetic counterparts from gravitational wave searches. Due to the time constraints of rapid follow-up, a locally available catalogue of reduced, homogenized data is required. To achieve this we used four existing catalogues: an updated version of the Tully Nearby Galaxy Catalog, the Catalog of Neighboring Galaxies, the V8k catalogue and HyperLEDA. The GWGC contains information on sky position, distance, blue magnitude, major and minor diameters, position angle, and galaxy type for 53,255 galaxies. Errors on these quantities are either taken directly from the literature or estimated based on our understanding of the uncertainties associated with the measurement method. By using the PGC numbering system developed for HyperLEDA, the catalogue has a reduced level of degeneracies compared to catalogues with a similar purpose and is easily updated. We also include 150 Milky Way globular clusters. Finally, we compare the GWGC to previously used catalogues, and find the GWGC to be more complete within 100 Mpc due to our use of more up-to-date input catalogues and the fact that we have not made a blue luminosity cut.Comment: Accepted for publication in Classical and Quantum Gravity, 13 pages, 7 figure

    The Distribution of [OII] Equivalent Widths of LCRS Galaxies

    Full text link
    We present a simple functional form for the joint distribution of R-band luminosity and [OII] 3727 emission-line equivalent widths of galaxies, and show that this form is a good fit to the galaxies in the Las Campanas Redshift Survey. We find a relationship between [OII] equivalent width W and R-band luminosity L_R of the approximate form: \approx (10 \AA) (L_R/L_{R,*})^{-1/2}, where L_{R,*} is the characteristic luminosity in the Schechter function. Because this joint distribution yields information about the relationship between stellar mass in a galaxy and its recent star-formation rate, it can be useful for testing theories of galaxy formation. Furthermore, understanding this joint distribution locally will make it easier to interpret the evolution of [OII] emission-line widths to higher redshifts.Comment: 8 pages, 1 figure, ApJ Letters, accepte

    Time Evolution of Galaxy Formation and Bias in Cosmological Simulations

    Full text link
    The clustering of galaxies relative to the mass distribution declines with time because: first, nonlinear peaks become less rare events; second, the densest regions stop forming new galaxies because gas there becomes too hot to cool and collapse; third, after galaxies form, they are gravitationally ``debiased'' because their velocity field is the same as the dark matter. To show these effects, we perform a hydrodynamic cosmological simulation and examine the density field of recently formed galaxies as a function of redshift. We find the bias b_* of recently formed galaxies (the ratio of the rms fluctuations of these galaxies and mass), evolves from 4.5 at z=3 to around 1 at z=0, on 8 h^{-1} Mpc comoving scales. The correlation coefficient r_* between recently formed galaxies and mass evolves from 0.9 at z=3 to 0.25 at z=0. As gas in the universe heats up and prevents star formation, star-forming galaxies become poorer tracers of the mass density field. After galaxies form, the linear continuity equation is a good approximation to the gravitational debiasing, even on nonlinear scales. The most interesting observational consequence of the simulations is that the linear regression of the star-formation density field on the galaxy density field evolves from about 0.9 at z=1 to 0.35 at z=0. These effects also provide a possible explanation for the Butcher-Oemler effect, the excess of blue galaxies in clusters at redshift z ~ 0.5. Finally, we examine cluster mass-to-light ratio estimates of Omega, finding that while Omega(z) increases with z, one's estimate Omega_est(z) decreases. (Abridged)Comment: 31 pages of text and figures; submitted to Ap

    A snapshot on galaxy evolution occurring in the Great Wall: the role of Nurture at z=0

    Full text link
    With the aim of quantifying the contribution of the environment on the evolution of galaxies at z=0 we have used the DR7 catalogue of the Sloan Digital Sky Survey (SDSS) to reconstruct the 3-D distribution of 4132 galaxies in 420 square degrees of the Coma supercluster, containing two rich clusters (Coma and A1367), several groups, and many filamentary structures belonging to the "Great Wall", at the approximate distance of 100 Mpc. At this distance the galaxy census is complete to Mi=-17.5 mag, i.e. approx 4 mag fainter than M*. The morphological classification of galaxies into early- (ellipticals) and late-types (spirals) was carried out by inspection of individual SDSS images and spectra. The density around each galaxies was determined in cylinders of 1 Mpc radius and 1000 km s^-1 half length. The color-luminosity relation was derived for galaxies in bins morphological type and in four thresholds of galaxy density-contrast, ranging from delta{1,1000} <= 0 (UL = the cosmic web); 0 < delta{1,1000} <= 4 (L = the loose groups); 4 < delta{1,1000} <= 20 (H = the large groups and the cluster's outskirts) and delta{1,1000} > 20 (UH = the cluster's cores). The fraction of early-type galaxies increases with the log of the over-density. A well defined "red sequence" composed of early-type galaxies exists in all environments at high luminosity, but it lacks of low luminosity (dwarf) galaxies in the lowest density environment. Conversely low luminosity isolated galaxies are predominantly of late-type. In other words the low luminosity end of the distribution is dominated by red dE galaxies in clusters and groups and by dwarf blue amorphous systems in the lowest density regions. At z=0 we find evidence for strong evolution induced by the environment (Nurture). Transformations take place mostly at low luminosity when star forming dwarf galaxies inhabiting low density environments migrate into amorphous passive dwarf ellipticals in their infall into denser regions. The mechanism involves suppression of the star formation due to gas stripping, without significant mass growth, as proposed by Boselli et al. (2008a). This process is more efficient and fast in ambients of increasing density. In the highest density environments (around clusters) the truncation of the star formation happens fast enough (few 100 Myr) to produce the signature of post-star-burst in galaxy spectra. PSB galaxies, that are in fact found significantly clustered around the largest dynamical units, represent the remnants of star forming isolated galaxies that had their star formation violently suppressed during their infall in clusters in the last 0.5-1.5 Gyrs, and the progenitors of future dEs.Comment: 14 pages, 14 figures, Astronomy and Astrophysics, in pres

    The Rest-frame Optical Colors of 99,000 SDSS Galaxies

    Get PDF
    We synthesize the rest-frame Stroemgren colors using SDSS spectra for 99,088 galaxies selected from Data Release 1. This narrow-band ~200 AA photometric system (uz, vz, bz, yz), first designed for the determination of effective temperature, metallicity and gravity of stars, measures the continuum spectral slope of galaxies in the rest-frame 3200-5800 AA wavelength range. Galaxies form a remarkably narrow locus (~0.03 mag) in the resulting color-color diagram. The Bruzual & Charlot population synthesis models suggest that the position of a galaxy along this locus is controlled by a degenerate combination of metallicity and age of the dominant stellar population. Galaxy distribution along the locus is bimodal, with the local minimum corresponding to an ~1 Gyr old single stellar population. The position perpendicular to the locus is independent of metallicity and age, and reflects the galaxy's dust content, as implied by both the models and the statistics of IRAS detections. A comparison of this locus with the galaxy locus in the H_delta-D_n(4000) diagram, utilized by Kauffmann et al. (2003) to estimate stellar masses, reveals a tight correlation, although the two analyzed spectral ranges barely overlap. Overall, the galaxy spectral energy distribution in the entire UV to near-IR range can be described as a single-parameter family with an accuracy of 0.1 mag, or better. This nearly one-dimensional distribution of galaxies in the multi-dimensional space of measured parameters strongly supports the conclusion of Yip et al. (2004), based on a principal component analysis, that SDSS galaxy spectra can be described by a small number of eigenspectra. Apparently, the contributions of stellar populations that dominate the optical emission from galaxies are combined in a simple and well-defined way.Comment: Accepted for publication in MNRAS; 19 pages, 28 color figure

    The UV-Optical Color Dependence of Galaxy Clustering in the Local Universe

    Get PDF
    We measure the UV-optical color dependence of galaxy clustering in the local universe. Using the clean separation of the red and blue sequences made possible by the NUV - r color-magnitude diagram, we segregate the galaxies into red, blue and intermediate "green" classes. We explore the clustering as a function of this segregation by removing the dependence on luminosity and by excluding edge-on galaxies as a means of a non-model dependent veto of highly extincted galaxies. We find that \xi (r_p, \pi) for both red and green galaxies shows strong redshift space distortion on small scales -- the "finger-of-God" effect, with green galaxies having a lower amplitude than is seen for the red sequence, and the blue sequence showing almost no distortion. On large scales, \xi (r_p, \pi) for all three samples show the effect of large-scale streaming from coherent infall. On scales 1 Mpc/h < r_p < 10 Mpc/h, the projected auto-correlation function w_p(r_p) for red and green galaxies fits a power-law with slope \gamma ~ 1.93 and amplitude r_0 ~ 7.5 and 5.3, compared with \gamma ~ 1.75 and r_0 ~ 3.9 Mpc/h for blue sequence galaxies. Compared to the clustering of a fiducial L* galaxy, the red, green, and blue have a relative bias of 1.5, 1.1, and 0.9 respectively. The w_p(r_p) for blue galaxies display an increase in convexity at ~ 1 Mpc/h, with an excess of large scale clustering. Our results suggest that the majority of blue galaxies are likely central galaxies in less massive halos, while red and green galaxies have larger satellite fractions, and preferentially reside in virialized structures. If blue sequence galaxies migrate to the red sequence via processes like mergers or quenching that take them through the green valley, such a transformation may be accompanied by a change in environment in addition to any change in luminosity and color.Comment: accepted by MNRA

    Peculiar Motions in the Region of the Ursa Major Supercluster of Galaxies

    Full text link
    We have investigated the peculiar motions of clusters of galaxies in the Ursa Major (UMa) supercluster and its neighborhood. Based on SDSS (Sloan Digital Sky Survey) data, we have compiled a sample of early-type galaxies and used their fundamental plane to determine the cluster distances and peculiar velocities. The samples of early-type galaxies in the central regions (within R_200) of 12 UMa clusters of galaxies, in three main subsystems of the supercluster -- the filamentary structures connecting the clusters, and in nine clusters from the nearest UMa neighborhood have similar parameters. The fairly high overdensity (3 by the galaxy number and 15 by the cluster number) suggests that the supercluster as a whole is gravitationally bound, while no significant peculiar motions have been found: the peculiar velocities do not exceed the measurement errors by more than a factor of 1.5-2. The mean random peculiar velocities of clusters and the systematic deviations from the overall Hubble expansion in the supercluster are consistent with theoretical estimates. For the possible approach of the three UMa subsystems to be confirmed, the measurement accuracy must be increased by a factor of 2-3.Comment: 21 pages, 4 tables, 7 figure

    Morphological Composition of z~0.4 groups: The site of S0 formation

    Full text link
    The low redshift Universe (z<~0.5) is not a dull place. Processes leading to the suppression of star formation and morphological transformation are prevalent: this is particularly evident in the dramatic upturn in the fraction of S0-type galaxies in clusters. However, until now, the process and environment of formation has remained unidentified. We present a HST-based morphological analysis of galaxies in the redshift-space selected group and field environments at z~0.4. Groups contain a much higher fraction of S0s at fixed luminosity than the lower density field, with >99.999% confidence. Indeed the S0 fraction in groups is at least as high as in z~0.4 clusters and X-ray selected groups, which have more luminous Intra Group Medium (IGM). An 97% confident excess of S0s at >=0.3Mpc from the group centre at fixed luminosity, tells us that formation is not restricted to, and possibly even avoids, the group cores. Interactions with a bright X-ray emitting IGM cannot be important for the formation of the majority of S0s in the Universe. In contrast to S0s, the fraction of elliptical galaxies in groups at fixed luminosity is similar to the field, whilst the brightest ellipticals are strongly enhanced towards the group centres (>99.999% confidence within 0.3Mpc). We conclude that the group and sub-group environments must be dominant for the formation of S0 galaxies, and that minor mergers, galaxy harassment and tidal interactions are the most likely responsible mechanisms. This has implications not only for the inferred pre-processing of cluster galaxies, but also for the global morphological and star formation budget of galaxies: as hierarchical clustering progresses, more galaxies will be subject to these transformations as they enter the group environment.Comment: 13 pages, 6 figures. Accepted for publication in Ap

    The Sloan Digital Sky Survey: The Cosmic Spectrum and Star-Formation History

    Get PDF
    We present a determination of the `Cosmic Optical Spectrum' of the Universe, i.e. the ensemble emission from galaxies, as determined from the red-selected Sloan Digital Sky Survey main galaxy sample and compare with previous results of the blue-selected 2dF Galaxy Redshift Survey. Broadly we find good agreement in both the spectrum and the derived star-formation histories. If we use a power-law star-formation history model where star-formation rate (1+z)β\propto (1+z)^\beta out to z=1, then we find that β\beta of 2 to 3 is still the most likely model and there is no evidence for current surveys missing large amounts of star formation at high redshift. In particular `Fossil Cosmology' of the local universe gives measures of star-formation history which are consistent with direct observations at high redshift. Using the photometry of SDSS we are able to derive the cosmic spectrum in absolute units (i.e.WA˚ W \AA^{-1}Mpc Mpc^{-3})at25A˚resolutionandfindgoodagreementwithpublishedbroadbandluminositydensities.ForaSalpeterIMFthebestfitstellarmass/lightratiois3.77.5) at 2--5\AA resolution and find good agreement with published broad-band luminosity densities. For a Salpeter IMF the best fit stellar mass/light ratio is 3.7--7.5 \Msun/\Lsunintherband(correspondingto in the r-band (corresponding to \omstars h = 0.00250.0055)andfromboththestellaremissionhistoryandtheH--0.0055) and from both the stellar emission history and the H\alphaluminositydensityindependentlywefindacosmologicalstarformationrateof0.030.04h luminosity density independently we find a cosmological star-formation rate of 0.03--0.04 h \Msunyr yr^{-1}Mpc Mpc^{-3}$ today.Comment: 17 pages, 11 figures, ApJ in press (April 10th 2003
    corecore