96 research outputs found

    Aphrodisiac effects of methanolic leaf extract of Pseudopanax arboreus (Araliaceae) (L.F. Phillipson) in normal male rats

    Get PDF
    Background: The leaves of Pseudopanax arboreus have been used traditionally for decades as aphrodisiac without scientific investigation. In this study, the effects of methanolic leaf extract of P. arboreus were evaluated on sexual behavior of normal male rats.Materials and Methods: Twenty-eight adult male rats were randomly grouped into 4 groups of 7 rats each. Rats in group 1 were treated with 10 ml/kg body weight distilled water, group 2 rats received 6mg/kg body weight Viagra™, while the rats in groups 3 and 4 were given 46.5 mg and 93mg/kg body weight respectively of the methanolic extract of the leaves of P. arboreus. Female rats were made receptive by ovariectomy and subsequent hormonal treatment. Sexual behavior parameters were monitored on days 1, 7, 14 and 21 by pairing each male rat to a receptive female. Relative weight of sex organs and hormonal (FSH, LH and testosterone) profile were also determined.Results: Doses of 46.5 mg/kg and 93 mg/kg, the extract significantly increased the mount and intromission frequencies, penile licking and relative weight of sex organs and enhanced testosterone production; and significantly reduced mount and intromission latencies, mean intromission interval, when compared to the distilled water group. The 93 mg/kg body weight dose prolonged ejaculation latency and reduced post-ejaculatory interval. However, the reference drug, Viagra™ proved more efficient than the extract.Conclusion: The methanolic extract of the leaves of P. arboreus possesses aphrodisiac properties which may be due to the actions of bioactive compounds present in the extract.Keywords: Pseudopanax arboreus; sexual behavior; methanolic extract; aphrodisia

    APHRODISIAC EFFECTS OF METHANOLIC LEAF EXTRACT OF PSEUDOPANAX ARBOREUS (ARALIACEAE) (L.F. PHILLIPSON) IN NORMAL MALE RATS

    Get PDF
    Background:  The leaves of Pseudopanax arboreus have been used traditionally for decades as aphrodisiac without scientific investigation. In this study, the effects of methanolic leaf extract of P. arboreus were evaluated on sexual behavior of normal male rats. Materials and Methods: Twenty-eight adult male rats were randomly grouped into 4 groups of 7 rats each. Rats in group 1 were treated with 10 ml/kg body weight distilled water, group 2 rats received 6mg/kg body weight Viagra™, while the rats in groups 3 and 4 were given 46.5 mg and 93mg/kg body weight respectively of the methanolic extract of the leaves of P. arboreus. Female rats were made receptive by ovariectomy and subsequent hormonal treatment. Sexual behavior parameters were monitored on days 1, 7, 14 and 21 by pairing each male rat to a receptive female. Relative weight of sex organs and hormonal (FSH, LH and testosterone) profile were also determined. Results: Doses of 46.5 mg/kg and 93 mg/kg, the extract significantly increased the mount and intromission frequencies, penile licking and relative weight of sex organs and enhanced testosterone production; and significantly reduced mount and intromission latencies, mean intromission interval, when compared to the distilled water group. The 93 mg/kg body weight dose prolonged ejaculation latency and reduced post-ejaculatory interval. However, the reference drug, Viagra™ proved more efficient than the extract. Conclusion: The methanolic extract of the leaves of P. arboreus possesses aphrodisiac properties which may be due to the actions of bioactive compounds present in the extract

    Application of novel analytical ultracentrifuge analysis to solutions of fungal mannans

    Get PDF
    Polysaccharides, the most abundant biopolymers, are required for a host of activities in lower organisms, animals, and plants. Their solution characterization is challenging due to their complex shape, heterogeneity, and size. Here, recently developed data analysis approaches were applied for traditional sedimentation equilibrium and velocity methods in order to investigate the molar mass distribution(s) of a subtype of polysaccharide, namely, mannans from four Candida spp. The molecular weight distributions of these mannans were studied using two recently developed equilibrium approaches: SEDFIT-MSTAR and MULTISIG, resulting in corroboratory distribution profiles. Additionally, sedimentation velocity data for all four mannans, analyzed using ls-g*(s) and Extended Fujita approaches, suggest that two of the fungal mannans (FM-1 and FM-3) have a unimodal distribution of molecular species whereas two others (FM-2 and FM-4) displayed bi-modal and broad distributions, respectively: this demonstrates considerable molecular heterogeneity in these polysaccharides, consistent with previous observations of mannans and polysaccharides in general. These methods not only have applications for the characterization of mannans but for other biopolymers such as polysaccharides, DNA, and proteins (including intrinsically disordered proteins)

    The effect of thermal processing in oil on the macromolecular integrity and acrylamide formation from starch of three potato cultivars organically fertilized

    Get PDF
    Starches from three organically produced cultivars of potato tuber (Lady Rosetta, Spunta and Voyager) have been studied in relation to (i) acrylamide production (ii) macromolecular integrity after frying with extra virgin olive oil, soybean oil and corn oil. During cultivation, a treatment involving the combination of nitrogen, phosphorus and potassium fertilization under organic farming was applied (N1, P2, K1 where Ν1 = 1.3 g Ν per plant, P2 = 5.2 g P2O5 per plant, Κ1 = 4.0 g K2O per plant). Potatoes fried in olive oil retained the highest glucose concentrations for all cultivars 0.85 ± 0.2 mmol/kg, followed by 0.48 ± 0.2 for those fried in corn oil and 0.40 ± 0.1 mmol/kg for those fried in soybean oil. The highest average fructose concentration was recorded for the samples fried in corn oil as 0.81 ± 0.2, followed by 0.80 ± 0.2 and 0.68 ± 0.3 mmol/kg for the samples fried in olive and soybean oils, respectively. Asparagine was the most abundant free amino acid in the three varieties tested, followed by glutamine and aspartic acid. The mean initial concentration of asparagine in raw potatoes tubers was 42.8 ± 1.6 mmoles kg−1 for Lady Rosetta, 34.6 ± 1.2 mmoles kg−1 (dry weight) for Spunta and 36.2 ± 2.0 mmoles kg−1 for Voyager. Lady Rosetta contained a significantly higher concentration of asparagine compared to the other two varieties (p < 0.05). The greatest quantity of acrylamide was observed in French fries derived from the potato variety Lady Rosetta when fried in soybean oil and it was 2,600 ± 440 μg/kg, followed by Spunta which was 2,280 ± 340 μg/kg and Voyager 1,120 ± 220 μg/kg. There is a significant reduction in the formation of acrylamide in the variety Voyager compared to the others (p = 0.05)

    Characterisation of insulin analogues therapeutically available to patients

    Get PDF
    The structure and function of clinical dosage insulin and its analogues were assessed. This included ‘native insulins’ (human recombinant, bovine, porcine), ‘fast-acting analogues’ (aspart, glulisine, lispro) and ‘slow-acting analogues’ (glargine, detemir, degludec). Analytical ultracentrifugation, both sedimentation velocity and equilibrium experiments, were employed to yield distributions of both molar mass and sedimentation coefficient of all nine insulins. Size exclusion chromatography, coupled to multi-angle light scattering, was also used to explore the function of these analogues. On ultracentrifugation analysis, the insulins under investigation were found to be in numerous conformational states, however the majority of insulins were present in a primarily hexameric conformation. This was true for all native insulins and two fast-acting analogues. However, glargine was present as a dimer, detemir was a multi-hexameric system, degludec was a dodecamer (di-hexamer) and glulisine was present as a dimer-hexamer-dihexamer system. However, size-exclusion chromatography showed that the two hexameric fast-acting analogues (aspart and lispro) dissociated into monomers and dimers due to the lack of zinc in the mobile phase. This comprehensive study is the first time all nine insulins have been characterised in this way, the first time that insulin detemir have been studied using analytical ultracentrifugation and the first time that insulins aspart and glulisine have been studied using sedimentation equilibrium. The structure and function of these clinically administered insulins is of critical importance and this research adds novel data to an otherwise complex functional physiological protein

    Discovery of biphenylacetamide-derived inhibitors of BACE1 using de novo structure-based molecular design

    Get PDF
    β-Secretase (BACE1), the enzyme responsible for the first and rate-limiting step in the production of amyloid-β peptides, is an attractive target for the treatment of Alzheimer’s disease. In this study, we report the application of the de novo fragment-based molecular design program SPROUT to the discovery of a series of nonpeptide BACE1 inhibitors based upon a biphenylacetamide scaffold. The binding affinity of molecules based upon this designed molecular scaffold was increased from an initial BACE1 IC50 of 323 μM to 27 μM following the synthesis of a library of optimized ligands whose structures were refined using the recently developed SPROUT-HitOpt software. Although a number of inhibitors were found to exhibit cellular toxicity, one compound in the series was found to have useful BACE1 inhibitory activity in a cellular assay with minimal cellular toxicity. This work demonstrates the power of an in silico fragment-based molecular design approach in the discovery of novel BACE1 inhibitors

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Both reversible self-association and structural changes underpin molecular viscoelasticity of mAb solutions

    Get PDF
    The role of antibody structure (conformation) in solution rheology is probed. It is demonstrated here that pH-dependent changes in the tertiary structure of 2 mAb solutions lead to viscoelasticity and not merely a shear viscosity (η) increase. Steady shear flow curves on mAb solutions are reported over broad pH (3.0 ≤ pH ≤ 8.7) and concentration (2 mg/mL ≤ c ≤ 120 mg/mL) ranges to comprehensively characterize their rheology. Results are interpreted using size exclusion chromatography, differential scanning calorimetry, analytical ultracentrifugation, near-UV circular dichroism, and dynamic light scattering. Changes in tertiary structure with concentration lead to elastic yield stress and increased solution viscosity in solution of “mAb1.” These findings are supported by dynamic light scattering and differential scanning calorimetry, which show increased hydrodynamic radius of mAb1 at low pH and a reduced melting temperature Tm, respectively. Conversely, another molecule at 120 mg/mL solution concentration is a strong viscoelastic gel due to perturbed tertiary structure (seen in circular dichroism) at pH 3.0, but the same molecule responds as a viscous liquid due to reversible self-association at pH 7.4 (verified by analytical ultracentrifugation). Both protein–protein interactions and structural perturbations govern pH-dependent viscoelasticity of mAb solutions
    corecore