121 research outputs found

    Induction of Polyploidy in Ictalurid Catfish and Comparative Performance of Diploid and Triploid Channel Catfish and Channel X Blue Catfish Hybrids.

    Get PDF
    This study provided indications of the feasibility of inducing polyploidy in ictalurids (channel catfish, Ictalurus punctatus, and hybrids with blue catfish, I. furcatus) by temperature or hydrostatic pressure shocks as well as the potential for improvement of growth and processing traits in triploid channel catfish x blue catfish hybrids. One-cell embryos of ictalurid catfish were subjected to either temperature or hydrostatic pressure shocks for induction of triploidy or tetraploidy. Hatch rates of embryos treated for induction of tetraploidy with hydrostatic pressure shocks were lower than those treated for induction of tetraploidy with heat shocks. Hatch rates of embryos tested for induction of tetraploidy with hydrostatic pressure shocks were lower than those treated for induction of tetraploidy with heat shocks. Heat shock parameters previously reported as being effective for tetraploid induction in channel catfish did not induce tetraploidy in the present study. The most effective heat shock and pressure shock treatments gave similar results, inducing approximately 30-70% tetraploidy. Treatments applied near first cell divisions (80 to 83 min post-fertilization) were more effective for producing tetraploidy than those applied earlier (43 to 75 min post-fertilization) in the cell cycle. It was hypothesized that triploid hybrids might have the advantages of heterosis as well as sterility caused by triploidy. No significant differences (α\alpha =.05) were detected in growth, feed efficiency, gonadosomatic index or dressout characteristics between diploid and triploid hybrids raised in 1.3 m diameter tanks, with the exception of the significantly higher (P = 0.0321) condition factor (K) of triploid hybrids. No significant difference was found between diploid and triploid pond-grown channel catfish for harvest weight or dressout percentages; however triploids had significantly lower survival and yield, and feed conversion efficiency. Macroscopic examination of several diploid and triploid catfish revealed the expected lack of sexual development and gonadal maturation in channel catfish triploids. The goal of sterility-induced increases in dressout percentage through induced polyploidy remains elusive. None of the significant differences I found between polyploid and diploid ictalurids would lead to economic benefit to the catfish industry. (Abstract shortened with permission of author.)

    The Solution Structures of Two Human IgG1 Antibodies Show Conformational Stability and Accommodate Their C1q and FcγR Ligands.

    Get PDF
    The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcγR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges of crystallization. To rectify this, we have studied the solution structures of two human IgG1 6a and 19a monoclonal antibodies in different buffers at different temperatures. Analytical ultracentrifugation showed that both antibodies were predominantly monomeric, with sedimentation coefficients s20,w (0) of 6.3-6.4 S. Only a minor dimer peak was observed, and the amount was not dependent on buffer conditions. Solution scattering showed that the x-ray radius of gyration Rg increased with salt concentration, whereas the neutron Rg values remained unchanged with temperature. The x-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions were unchanged in different buffers to indicate conformational stability. Constrained atomistic scattering modeling revealed predominantly asymmetric solution structures for both antibodies with extended hinge structures. Both structures were similar to the only known crystal structure of full-length human IgG1. The Fab conformations in both structures were suitably positioned to permit the Fc region to bind readily to its FcγR and C1q ligands without steric clashes, unlike human IgG4. Our molecular models for human IgG1 explain its immune activities, and we discuss its stability and function for therapeutic applications

    Fluorescence strategies for high-throughput quantification of protein interactions

    Get PDF
    Advances in high-throughput characterization of protein networks in vivo have resulted in large databases of unexplored protein interactions that occur during normal cell function. Their further characterization requires quantitative experimental strategies that are easy to implement in laboratories without specialized equipment. We have overcome many of the previous limitations to thermodynamic quantification of protein interactions, by developing a series of in-solution fluorescence-based strategies. These methods have high sensitivity, a broad dynamic range, and can be performed in a high-throughput manner. In three case studies we demonstrate how fluorescence (de)quenching and fluorescence resonance energy transfer can be used to quantitatively probe various high-affinity protein–DNA and protein–protein interactions. We applied these methods to describe the preference of linker histone H1 for nucleosomes over DNA, the ionic dependence of the DNA repair enzyme PARP1 in DNA binding, and the interaction between the histone chaperone Nap1 and the histone H2A–H2B heterodimer

    The Crystal Structure of the SV40 T-Antigen Origin Binding Domain in Complex with DNA

    Get PDF
    DNA replication is initiated upon binding of “initiators” to origins of replication. In simian virus 40 (SV40), the core origin contains four pentanucleotide binding sites organized as pairs of inverted repeats. Here we describe the crystal structures of the origin binding domain (obd) of the SV40 large T-antigen (T-ag) both with and without a subfragment of origin-containing DNA. In the co-structure, two T-ag obds are oriented in a head-to-head fashion on the same face of the DNA, and each T-ag obd engages the major groove. Although the obds are very close to each other when bound to this DNA target, they do not contact one another. These data provide a high-resolution structural model that explains site-specific binding to the origin and suggests how these interactions help direct the oligomerization events that culminate in assembly of the helicase-active dodecameric complex of T-ag

    A Two-Hybrid Assay to Study Protein Interactions within the Secretory Pathway

    Get PDF
    Interactions of transcriptional activators are difficult to study using transcription-based two-hybrid assays due to potent activation resulting in false positives. Here we report the development of the Golgi two-hybrid (G2H), a method that interrogates protein interactions within the Golgi, where transcriptional activators can be assayed with negligible background. The G2H relies on cell surface glycosylation to report extracellularly on protein-protein interactions occurring within the secretory pathway. In the G2H, protein pairs are fused to modular domains of the reporter glycosyltransferase, Och1p, and proper cell wall formation due to Och1p activity is observed only when a pair of proteins interacts. Cells containing interacting protein pairs are identified by selectable phenotypes associated with Och1p activity and proper cell wall formation: cells that have interacting proteins grow under selective conditions and display weak wheat germ agglutinin (WGA) binding by flow cytometry, whereas cells that lack interacting proteins display stunted growth and strong WGA binding. Using this assay, we detected the interaction between transcription factor MyoD and its binding partner Id2. Interfering mutations along the MyoD:Id2 interaction interface ablated signal in the G2H assay. Furthermore, we used the G2H to detect interactions of the activation domain of Gal4p with a variety of binding partners. Finally, selective conditions were used to enrich for cells encoding interacting partners. The G2H detects protein-protein interactions that cannot be identified via traditional two-hybrid methods and should be broadly useful for probing previously inaccessible subsets of the interactome, including transcriptional activators and proteins that traffic through the secretory pathway

    Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    Get PDF
    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated
    corecore