99 research outputs found

    Knowledge-aware Complementary Product Representation Learning

    Full text link
    Learning product representations that reflect complementary relationship plays a central role in e-commerce recommender system. In the absence of the product relationships graph, which existing methods rely on, there is a need to detect the complementary relationships directly from noisy and sparse customer purchase activities. Furthermore, unlike simple relationships such as similarity, complementariness is asymmetric and non-transitive. Standard usage of representation learning emphasizes on only one set of embedding, which is problematic for modelling such properties of complementariness. We propose using knowledge-aware learning with dual product embedding to solve the above challenges. We encode contextual knowledge into product representation by multi-task learning, to alleviate the sparsity issue. By explicitly modelling with user bias terms, we separate the noise of customer-specific preferences from the complementariness. Furthermore, we adopt the dual embedding framework to capture the intrinsic properties of complementariness and provide geometric interpretation motivated by the classic separating hyperplane theory. Finally, we propose a Bayesian network structure that unifies all the components, which also concludes several popular models as special cases. The proposed method compares favourably to state-of-art methods, in downstream classification and recommendation tasks. We also develop an implementation that scales efficiently to a dataset with millions of items and customers

    An Initial Study of Multimodality in Wind Farm Layout Optimization Problems

    Get PDF

    Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting.

    Get PDF
    Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accepted hypothesis that cichlids are an ancient group whose major biogeographic patterns arose from Gondwanan vicariance. Although the Early Cretaceous (ca 135 Ma) divergence of living cichlids demanded by the vicariance model now represents a key calibration for teleost molecular clocks, this putative split pre-dates the oldest cichlid fossils by nearly 90 Myr. Here, we provide independent palaeontological and relaxed-molecular-clock estimates for the time of cichlid origin that collectively reject the antiquity of the group required by the Gondwanan vicariance scenario. The distribution of cichlid fossil horizons, the age of stratigraphically consistent outgroup lineages to cichlids and relaxed-clock analysis of a DNA sequence dataset consisting of 10 nuclear genes all deliver overlapping estimates for crown cichlid origin centred on the Palaeocene (ca 65-57 Ma), substantially post-dating the tectonic fragmentation of Gondwana. Our results provide a revised macroevolutionary time scale for cichlids, imply a role for dispersal in generating the observed geographical distribution of this important model clade and add to a growing debate that questions the dominance of the vicariance paradigm of historical biogeography

    Characterization of fungal biodiversity and communities associated with reef macroalga Sargassum ilicifolium reveals fungal community differentiation according to geographic locality and algal structure

    Get PDF
    Marine environments abound with opportunities to discover new species of fungi even in relatively well-studied ecosystems such as coral reefs. Here, we investigated the fungal communities associated with the canopy forming macroalga Sargassum ilicifolium(Turner) C. Argardh (1820) in Singapore. We collected eight S. ilicifolium thalli from each of eight island locations and separated them into three structures—leaves, holdfast and vesicles. Amplicon sequencing of the fungal internal transcribed spacer 1 (ITS1) and subsequent analyses revealed weak but significant differences in fungal community composition from different structures. Fungal communities were also significantly different among sampling localities, even over relatively small spatial scales (≤ 12 km). Unsurprisingly, all structures from all localities were dominated by unclassified fungi. Our findings demonstrate the potential of marine environments to act as reservoirs of undocumented biodiversity that harbour many novel fungal taxa. These unclassified fungi highlight the need to look beyond terrestrial ecosystems in well-studied regions of the world, and to fully characterize fungal biodiversity in hotspots such as Southeast Asia for better understanding the roles they play in promoting and maintaining life on our planet

    Regge calculus from a new angle

    Full text link
    In Regge calculus space time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show such a formulation allows to replace the length variables by 3d or 4d dihedral angles as basic variables. Moreover we will introduce a first order formulation, which in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.Comment: 8 page

    The influence of HLA genotype on the development of metal hypersensitivity following joint replacement

    Get PDF
    We thank Innovate UK Edge for providing funding to allow this research to be carried out.Background  Over five million joint replacements are performed across the world each year. Cobalt chrome (CoCr) components are used in most of these procedures. Some patients develop delayed type hypersensitivity (DTH) responses to CoCr implants, resulting in tissue damage and revision surgery. DTH is unpredictable and genetic links have yet to be definitively established. Methods At a single site, we carried out an initial investigation to identify HLA alleles associated with development of DTH following metal-on-metal hip arthroplasty. We then recruited patients from other centres to train and validate an algorithm incorporating patient age, gender, HLA genotype44 and blood metal concentrations to predict the development of DTH. Accuracy of the modelling was assessed using performance metrics including time dependent receiver operator curves. Results Using next generation sequencing, here we determine the HLA genotypes of 606 patients. 176 of these patients had experienced failure of their prostheses; the remaining 430 remain asymptomatic at a mean follow up of twelve years. We demonstrate that the development of DTH is associated with patient age, gender, the magnitude of metal exposure and the presence of certain HLA class II alleles. We show that the predictive algorithm developed from this investigation performs to an accuracy suitable for clinical use, with weighted mean survival probability errors of 1.8% and 3.1%53 for pre-operative and post-operative models respectively. Conclusions The development of DTH following joint replacement appears to be determined by the interaction between implant wear and a patient’s genotype. The algorithm described in this paper may improve implant selection and help direct patient surveillance following surgery. Further consideration should be given towards understanding patient specific responses to different biomaterials.Publisher PDFPeer reviewe

    Are 100 enough? Inferring acanthomorph teleost phylogeny using Anchored Hybrid Enrichment

    Get PDF
    BACKGROUND: The past decade has witnessed remarkable progress towards resolution of the Tree of Life. However, despite the increased use of genomic scale datasets, some phylogenetic relationships remain difficult to resolve. Here we employ anchored phylogenomics to capture 107 nuclear loci in 29 species of acanthomorph teleost fishes, with 25 of these species sampled from the recently delimited clade Ovalentaria. Previous studies employing multilocus nuclear exon datasets have not been able to resolve the nodes at the base of the Ovalentaria tree with confidence. Here we test whether a phylogenomic approach will provide better support for these nodes, and if not, why this may be. RESULTS: After using a novel method to account for paralogous loci, we estimated phylogenies with maximum likelihood and species tree methods using DNA sequence alignments of over 80,000 base pairs. Several key relationships within Ovalentaria are well resolved, including 1) the sister taxon relationship between Cichlidae and Pholidichthys, 2) a clade containing blennies, grammas, clingfishes, and jawfishes, and 3) monophyly of Atherinomorpha (topminnows, flyingfishes, and silversides). However, many nodes in the phylogeny associated with the early diversification of Ovalentaria are poorly resolved in several analyses. Through the use of rarefaction curves we show that limited phylogenetic resolution among the earliest nodes in the Ovalentaria phylogeny does not appear to be due to a deficiency of data, as average global node support ceases to increase when only 1/3rd of the sampled loci are used in analyses. Instead this lack of resolution may be driven by model misspecification as a Bayesian mixed model analysis of the amino acid dataset provided good support for parts of the base of the Ovalentaria tree. CONCLUSIONS: Although it does not appear that the limited phylogenetic resolution among the earliest nodes in the Ovalentaria phylogeny is due to a deficiency of data, it may be that both stochastic and systematic error resulting from model misspecification play a role in the poor resolution at the base of the Ovalentaria tree as a Bayesian approach was able to resolve some of the deeper nodes, where the other methods failed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0415-0) contains supplementary material, which is available to authorized users

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore