3,014 research outputs found

    Galactic Spiral Structure

    Full text link
    We describe the structure and composition of six major stellar streams in a population of 20 574 local stars in the New Hipparcos Reduction with known radial velocities. We find that, once fast moving stars are excluded, almost all stars belong to one of these streams. The results of our investigation have lead us to re-examine the hydrogen maps of the Milky Way, from which we identify the possibility of a symmetric two-armed spiral with half the conventionally accepted pitch angle. We describe a model of spiral arm motions which matches the observed velocities and composition of the six major streams, as well as the observed velocities of the Hyades and Praesepe clusters at the extreme of the Hyades stream. We model stellar orbits as perturbed ellipses aligned at a focus in coordinates rotating at the rate of precession of apocentre. Stars join a spiral arm just before apocentre, follow the arm for more than half an orbit, and leave the arm soon after pericentre. Spiral pattern speed equals the mean rate of precession of apocentre. Spiral arms are shown to be stable configurations of stellar orbits, up to the formation of a bar and/or ring. Pitch angle is directly related to the distribution of orbital eccentricities in a given spiral galaxy. We show how spiral galaxies can evolve to form bars and rings. We show that orbits of gas clouds are stable only in bisymmetric spirals. We conclude that spiral galaxies evolve toward grand design two-armed spirals. We infer from the velocity distributions that the Milky Way evolved into this form about 9 Gyrs ago.Comment: Published in Proc Roy Soc A. A high resolution version of this file can be downloaded from http://papers.rqgravity.net/SpiralStructure.pdf. A simplified account with animations begins at http://rqgravity.net/SpiralStructur

    Workshop on reconstruction schemes for magnetic resonance data: summary of findings and recommendations

    Get PDF
    [EN] The high fidelity reconstruction of compressed and low-resolution magnetic resonance (MR) data is essential for simultaneously improving patient care, accuracy in diagnosis and quality in clinical research. Sponsored by the Royal Society through the Newton Mobility Grant Scheme, we held a half-day workshop on reconstruction schemes for MR data on the 17 of August 2016 to discuss new ideas from related research fields that could be useful to overcome the shortcomings of the conventional reconstruction methods that have been evaluated up to date. Participants were 21 university students, computer scientists, image analysts, engineers and physicists from institutions from 6 different countries. The discussion evolved around exploring new avenues to achieve high resolution, high quality and fast acquisition of MR imaging. In this article, we summarise the topics covered throughout the workshop and make recommendations for ongoing and future works.The workshop was sponsored by the Royal Society through the Newton Mobility Grant NI150340 to E.O.-I. and M.C.V.H. M.C.V.H. is funded by Row Fogo Charitable Trust; R.O.R. is funded by the Ministry of Education, Research, Culture and Sports of Valencia (Spain) under the programme VALi+d 2015; E.O.-I. is funded by Bogazici University, and the research presented at the workshop was supported by TUBITAK Career Development Grant 112E036, EU Marie Curie IRG Grant FP7-PEOPLE-RG-2009 256528, Tubitak 1001 Research Grant 115S219, and Bogazici University BAP Grant 10844SUP; I.M. is funded by core funds from the University of Edinburgh, including the Scottish Funding Council; A.J.V.B. is funded by the Marie Sklodowska Curie scholarship which is part of the European Union's H2020 Framework Programme (H2020-MSCA-ITN-2014) under the grant agreement number 642685 MacSeNet; and V.G.O. and P.F. are privately funded.Ozturk-Isik, E.; Marshall, I.; Filipiak, P.; Benjamin, AJV.; Ones, VG.; Ortiz-Ramón, R.; Valdes Hernandez, MDC. (2017). Workshop on reconstruction schemes for magnetic resonance data: summary of findings and recommendations. Royal Society Open Science. 4(2):1-4. https://doi.org/10.1098/rsos.160731144

    The Unique Origin of Colors of Armchair Carbon Nanotubes

    Full text link
    The colors of suspended metallic colloidal particles are determined by their size-dependent plasma resonance, while those of semiconducting colloidal particles are determined by their size-dependent band gap. Here, we present a novel case for armchair carbon nanotubes, suspended in aqueous medium, for which the color depends on their size-dependent excitonic resonance, even though the individual particles are metallic. We observe distinct colors of a series of armchair-enriched nanotube suspensions, highlighting the unique coloration mechanism of these one-dimensional metals.Comment: 4 pages, 3 figure

    Explosive instability due to 4-wave mixing

    Full text link
    It is known that an explosive instability can occur when nonlinear waves propagate in certain media that admit 3-wave mixing. The purpose of this paper is to show that explosive instabilities can occur even in media that admit no 3-wave mixing. Instead, the instability is caused by 4-wave mixing: four resonantly interacting wavetrains gain energy from a background, and all blow up in a finite time. Unlike singularities associated with self-focussing, these singularities can occur with no spatial structure - the waves blow up everywhere in space, simultaneously

    Random attractors for degenerate stochastic partial differential equations

    Full text link
    We prove the existence of random attractors for a large class of degenerate stochastic partial differential equations (SPDE) perturbed by joint additive Wiener noise and real, linear multiplicative Brownian noise, assuming only the standard assumptions of the variational approach to SPDE with compact embeddings in the associated Gelfand triple. This allows spatially much rougher noise than in known results. The approach is based on a construction of strictly stationary solutions to related strongly monotone SPDE. Applications include stochastic generalized porous media equations, stochastic generalized degenerate p-Laplace equations and stochastic reaction diffusion equations. For perturbed, degenerate p-Laplace equations we prove that the deterministic, infinite dimensional attractor collapses to a single random point if enough noise is added.Comment: 34 pages; The final publication is available at http://link.springer.com/article/10.1007%2Fs10884-013-9294-

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore