152 research outputs found
Operationalizing the 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention Recommendations: A Standardized Scoring System
Background: Following the publication of the 2018 World Cancer Research Fund (WCRF)
and American Institute for Cancer Research (AICR) Third Expert Report, a collaborative group was
formed to develop a standardized scoring system and provide guidance for research applications.
Methods: The 2018 WCRF/AICR Cancer Prevention Recommendations, goals, and statements of
advice were examined to define components of the new Score. Cut-points for scoring were based
on quantitative guidance in the 2018 Recommendations and other guidelines, past research that
operationalized 2007 WCRF/AICR Recommendations, and advice from the Continuous Update Project
Expert Panel. Results: Eight of the ten 2018 WCRF/AICR Recommendations concerning weight,
physical activity, diet, and breastfeeding (optional), were selected for inclusion. Each component
is worth one point: 1, 0.5, and 0 points for fully, partially, and not meeting each recommendation,
respectively (Score: 0 to 7–8 points). Two recommendations on dietary supplement use and for
cancer survivors are not included due to operational redundancy. Additional guidance stresses the
importance of accounting for other risk factors (e.g., smoking) in relevant models. Conclusions: The
proposed 2018 WCRF/AICR Score is a practical tool for researchers to examine how adherence to the
2018 WCRF/AICR Recommendations relates to cancer risk and mortality in various adult populations.
Phosphatidylinositol 3-kinase/AKT pathway inhibition by doxazosin promotes glioblastoma cells death, upregulation of p53 and triggers low neurotoxicity
Glioblastoma is the most frequent and malignant brain tumor. Treatment includes chemotherapy with temozolomide concomitant with surgical resection and/or irradiation. However, a number of cases are resistant to temozolomide, as well as the human glioblastoma cell line U138-MG. We investigated doxazosin’s (an antihypertensive drug) activity against glioblastoma cells (C6 and U138-MG) and its neurotoxicity on primary astrocytes and organoptypic hippocampal cultures. For this study, the following methods were used: citotoxicity assays, flow cytometry, western-blotting and confocal microscopy. We showed that doxazosin induces cell death on C6 and U138-MG cells. We observed that doxazosin’s effects on the PI3K/Akt pathway were similar as LY294002 (PI3K specific inhibitor). In glioblastoma cells treated with doxasozin, Akt levels were greatly reduced. Upon examination of activities of proteins downstream of Akt we observed upregulation of GSK-3β and p53. This led to cell proliferation inhibition, cell death induction via caspase-3 activation and cell cycle arrest at G0/G1 phase in glioblastoma cells. We used in this study Lapatinib, a tyrosine kinase inhibitor, as a comparison with doxazosin because they present similar chemical structure. We also tested the neurocitotoxicity of doxazosin in primary astrocytes and organotypic cultures and observed that doxazosin induced cell death on a small percentage of non-tumor cells. Aggressiveness of glioblastoma tumors and dismal prognosis require development of new treatment agents. This includes less toxic drugs, more selective towards tumor cells, causing less damage to the patient. Therefore, our results confirm the potential of doxazosin as an attractive therapeutic antiglioma agent
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Population medical genetics : translating science to the community
Rare genetic disorders are currently in the spotlight due to the elevated number of different conditions and significant total number of affected patients. The study of these disorders is extremely helpful for the elucidation of physiological processes related with complex disorders. Isolated populations are instrumental for the study of genetic disorders, considering their homogeneity and high proportion of affected patients in a small geographic area. These favorable conditions lead to the creation of a new discipline, known as "population medical genetics", which integrates medical genetics, population genetics, epidemiological genetics and community genetics. In order to develop practical activities in this new discipline, the National Institute of Population Medical Genetics (INaGeMP) was created in 2008 in Brazil. INaGeMP has developed several tools and funded numerous research activities. In this review, we highlight three successful projects developed in the first 10 years of INaGeMP activities (2008-2018): a newborn screening pilot study for MPS VI in Northeast Brazil, the study of Machado-Joseph disease in Brazilian families with Azorian ancestry, and the high twinning rate in a small town in southern Brazil. The results of these projects in terms of scientific output and contributions to the affected communities highlight the success and importance of INaGeMP
Identification of Novel Avian Influenza Virus Derived CD8+ T-Cell Epitopes
Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells are associated with protection against homologous and heterologous influenza strains. In contrast to what has been described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes. MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection (dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual peptides and the production of IFNγ was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted, 3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against AIV infection in a natural host for influenza, and may be important for vaccine development
Psychology and aggression
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- …