284 research outputs found
Comparison of compact toroid configurations
The IAEA Coordinated Research Project (CRP) on "Comparison of Compact Toroid Configurations" has participants from Argentina, Brazil, China, India, Israel, Italy, Japan, Russia, Ukraine (Dr. Yaroslav Kolesnichenko), UK, and USA. The results of a recent CRP meeting are summarized here. Spherical tokamaks (ST) have very low aspect ratios, which facilitates attainment of high b. Spheromaks have both poloidal and toroidal fields, but no center post. Field reversed configurations (FRC), have only poloidal magnetic fields
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
Coronal mass ejections as expanding force-free structures
We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic
structures and find the self-similar dynamics of configurations with spatially
constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical
geometries, expanding spheromaks and expanding Lundquist fields
correspondingly. The field structures remain force-free, under the conventional
non-relativistic assumption that the dynamical effects of the inductive
electric fields can be neglected. While keeping the internal magnetic field
structure of the stationary solutions, expansion leads to complicated internal
velocities and rotation, induced by inductive electric field. The structures
depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured
at a given moment, and thus are applicable to arbitrary expansion laws. In case
of cylindrical Lundquist fields, the flux conservation requires that both axial
and radial expansion proceed with equal rates. In accordance with observations,
the model predicts that the maximum magnetic field is reached before the
spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic
Understanding Helical Magnetic Dynamo Spectra with a Nonlinear Four-Scale Theory
Recent MHD dynamo simulations for magnetic Prandtl number demonstrate
that when MHD turbulence is forced with sufficient kinetic helicity, the
saturated magnetic energy spectrum evolves from having a single peak below the
forcing scale to become doubly peaked with one peak at the system (=largest)
scale and one at the forcing scale. The system scale field growth is well
modeled by a recent nonlinear two-scale nonlinear helical dynamo theory in
which the system and forcing scales carry magnetic helicity of opposite sign.
But a two-scale theory cannot model the shift of the small-scale peak toward
the forcing scale. Here I develop a four-scale helical dynamo theory which
shows that the small-scale helical magnetic energy first saturates at very
small scales, but then successively saturates at larger values at larger
scales, eventually becoming dominated by the forcing scale. The transfer of the
small scale peak to the forcing scale is completed by the end of the kinematic
growth regime of the large scale field, and does not depend on magnetic
Reynolds number for large . The four-scale and two-scale theories
subsequently evolve almost identically, and both show significant field growth
on the system and forcing scales that is independent of . In the present
approach, the helical and nonhelical parts of the spectrum are largely
decoupled. Implications for fractionally helical turbulence are discussed.Comment: 19 Pages, LaTex, (includes 4 figs at the end), in press, MNRA
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
- …