1,788 research outputs found
Deployment Technology of a Heliogyro Solar Sail for Long Duration Propulsion
Interplanetary, multi-mission, station-keeping capabilities will require that a spacecraft employ a highly efficient propulsion-navigation system. The majority of space propulsion systems are fuel-based and require the vehicle to carry and consume fuel as part of the mission. Once the fuel is consumed, the mission is set, thereby limiting the potential capability. Alternatively, a method that derives its acceleration and direction from solar photon pressure using a solar sail would eliminate the requirement of onboard fuel to meet mission objectives. MacNeal theorized that the heliogyro-configured solar sail architecture would be lighter, less complex, cheaper, and less risky to deploy a large sail area versus a masted sail. As sail size increases, the masted sail requires longer booms resulting in increased mass, and chaotic uncontrollable deployment. With a heliogyro, the sail membrane is stowed as a roll of thin film forming a blade when deployed that can extend up to kilometers. Thus, a benefit of using a heliogyro-configured solar sail propulsion technology is the mission scalability as compared to masted versions, which are size constrained. Studies have shown that interplanetary travel is achievable by the heliogyro solar sail concept. Heliogyro solar sail concept also enables multi-mission missions such as sample returns, and supply transportation from Earth to Mars as well as station-keeping missions to provide enhanced warning of solar storm. This paper describes deployment technology being developed at NASA Langley Research Center to deploy and control the center-of-mass/center-of-pressure using a twin bladed heliogyro solar sail 6-unit (6U) CubeSat. The 6U comprises 2x2U blade deployers and 2U for payload. The 2U blade deployers can be mounted to 6U or larger scaled systems to serve as a non-chemical in-space propulsion system. A single solar sail blade length is estimated to be 2.4 km with a total area from two blades of 720 m2; total allowable weight of a 6U CubeSat is approximately 8 kg. This makes the theoretical characteristic acceleration of approximately 0.75 mm/s2 at I AU (astronomical unit), when compared to IKAROS (0.005 mm/s2) and NanoSail-D (0.02 mm/s2)
Evaluating the Sensitivity of HeatWave Definitions among North Carolina Physiographic Regions
Exposure to extreme heat is a known risk factor that is associated with increased heat-related illness (HRI) outcomes. The relevance of heat wave definitions (HWDs) could change across health conditions and geographies due to the heterogenous climate profile. This study compared the sensitivity of 28 HWDs associated with HRI emergency department visits over five summer seasons (2011â2016), stratified by two physiographic regions (Coastal and Piedmont) in North Carolina. The HRI rate ratios associated with heat waves were estimated using the generalized linear regression framework assuming a negative binomial distribution. We compared the Akaike Information Criterion (AIC) values across the HWDs to identify an optimal HWD. In the Coastal region, HWDs based on daily maximum temperature with a threshold \u3e 90th percentile for two or more consecutive days had the optimal model fit. In the Piedmont region, HWD based on the daily minimum temperature with a threshold value \u3e 90th percentile for two or more consecutive days was optimal. The HWDs with optimal model performance included in this study captured moderate and frequent heat episodes compared to the National Weather Service (NWS) heat products. This study compared the HRI morbidity risk associated with epidemiologic-based HWDs and with NWS heat products. Our findings could be used for public health education and suggest recalibrating NWS heat products
Developing a selfâconsistent description of Titan's upper atmosphere without hydrodynamic escape
In this study, we develop a best fit description of Titan's upper atmosphere between 500âkm and 1500 km, using a oneâdimensional (1âD) version of the threeâdimensional (3âD) Titan Global IonosphereâThermosphere Model. For this modeling, we use constraints from several lower atmospheric CassiniâHuygens investigations and validate our simulation results against in situ Cassini IonâNeutral Mass Spectrometer (INMS) measurements of N 2 , CH 4 , H 2 , 40 Ar, HCN, and the major stable isotopic ratios of 14 N/ 15 N in N 2 . We focus our investigation on aspects of Titan's upper atmosphere that determine the amount of atmospheric escape required to match the INMS measurements: the amount of turbulence, the inclusion of chemistry, and the effects of including a selfâconsistent thermal balance. We systematically examine both hydrodynamic escape scenarios for methane and scenarios with significantly reduced atmospheric escape. Our results show that the optimum configuration of Titan's upper atmosphere is one with a methane homopause near 1000 km and atmospheric escape rates of 1.41â1.47âĂ10 11 CH 4 âm â2 s â1 and 1.08âĂ10 14 âH 2 âm â2 s â1 (scaled relative to the surface). We also demonstrate that simulations consistent with hydrodynamic escape of methane systematically produce inferior fits to the multiple validation points presented here. Key Points The methane homopause is most likely near 1000 km altitude Hydrodynamic escape of methane is not required to match INMS Molecular hydrogen is best fit with a methane homopause of 1000 kmPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108005/1/jgra51076.pd
The Association between Drought Exposure and Respiratory-Related Mortality in the United States from 2000 to 2018
Climate change has brought increasing attention to the assessment of health risks associated with climate and extreme events. Drought is a complex climate phenomenon that has been increasing in frequency and severity both locally and globally due to climate change. However, the health risks of drought are often overlooked, especially in places such as the United States, as the pathways to health impacts are complex and indirect. This study aims to conduct a comprehensive assessment of the effects of monthly drought exposure on respiratory mortality for NOAA climate regions in the United States from 2000 to 2018. A two-stage model was applied to estimate the location-specific and overall effects of respiratory risk associated with two different drought indices over two timescales (the US Drought Monitor and the 6-month and 12-month Evaporative Demand Drought Index). During moderate and severe drought exposure, respiratory mortality risk ratio in the general population increased up to 6.0% (95% Cr: 4.8 to 7.2) in the Northeast, 9.0% (95% Cr: 4.9 to 13.3) in the Northern Rockies and Plains, 5.2% (95% Cr: 3.9 to 6.5) in the Ohio Valley, 3.5% (95% Cr: 1.9 to 5.0) in the Southeast, and 15.9% (95% Cr: 10.8 to 20.4) in the Upper Midwest. Our results showed that age, ethnicity, sex (both male and female), and urbanicity (both metro and non-metro) resulted in more affected population subgroups in certain climate regions. The magnitude and direction of respiratory risk ratio differed across NOAA climate regions. These results demonstrate a need for policymakers and communities to develop more effective strategies to mitigate the effects of drought across regions
Simulating the oneâdimensional structure of Titan's upper atmosphere: 1. Formulation of the Titan Global IonosphereâThermosphere Model and benchmark simulations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94638/1/jgre2819.pd
Simulating the oneâdimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94596/1/jgre2822.pd
Distinct Immune Signature Predicts Progression of Vestibular Schwannoma and Unveils a Possible Viral Etiology
BACKGROUND: The management of sub-totally resected sporadic vestibular schwannoma (VS) may include observation, re-resection or irradiation. Identifying the optimal choice can be difficult due to the disease\u27s variable progression rate. We aimed to define an immune signature and associated transcriptomic fingerprint characteristic of rapidly-progressing VS to elucidate the underpinnings of rapidly progressing VS and identify a prognostic model for determining rate of progression.
METHODS: We used multiplex immunofluorescence to characterize the immune microenvironment in 17 patients with sporadic VS treated with subtotal surgical resection alone. Transcriptomic analysis revealed differentially-expressed genes and dysregulated pathways when comparing rapidly-progressing VS to slowly or non-progressing VS.
RESULTS: Rapidly progressing VS was distinctly enriched in CD4
CONCLUSION: Rapid progression of residual vestibular schwannoma following subtotal surgical resection has an underlying immune etiology that may be virally originating; and despite an abundant adaptive immune response, T-cell immunosenescence may be associated with rapid progression of VS. These findings provide a rationale for clinical trials evaluating immunotherapy in patients with rapidly progressing VS
Atmospheric Escape Processes and Planetary Atmospheric Evolution
The habitability of the surface of any planet is determined by a complex
evolution of its interior, surface, and atmosphere. The electromagnetic and
particle radiation of stars drive thermal, chemical and physical alteration of
planetary atmospheres, including escape. Many known extrasolar planets
experience vastly different stellar environments than those in our Solar
system: it is crucial to understand the broad range of processes that lead to
atmospheric escape and evolution under a wide range of conditions if we are to
assess the habitability of worlds around other stars. One problem encountered
between the planetary and the astrophysics communities is a lack of common
language for describing escape processes. Each community has customary
approximations that may be questioned by the other, such as the hypothesis of
H-dominated thermosphere for astrophysicists, or the Sun-like nature of the
stars for planetary scientists. Since exoplanets are becoming one of the main
targets for the detection of life, a common set of definitions and hypotheses
are required. We review the different escape mechanisms proposed for the
evolution of planetary and exoplanetary atmospheres. We propose a common
definition for the different escape mechanisms, and we show the important
parameters to take into account when evaluating the escape at a planet in time.
We show that the paradigm of the magnetic field as an atmospheric shield should
be changed and that recent work on the history of Xenon in Earth's atmosphere
gives an elegant explanation to its enrichment in heavier isotopes: the
so-called Xenon paradox
Vertical dust mixing and the interannual variations in the Mars thermosphere
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94815/1/jgre2303.pd
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC
Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H âÎł Îł, H â Z Zâ â4l and H âW Wâ âlÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of âs = 7 TeV and âs = 8 TeV, corresponding to an integrated luminosity of about 25 fbâ1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
- âŠ