20 research outputs found

    MSIsensor-ct: Microsatellite instability detection using cfDNA sequencing data

    Get PDF
    MOTIVATION: Microsatellite instability (MSI) is a promising biomarker for cancer prognosis and chemosensitivity. Techniques are rapidly evolving for the detection of MSI from tumor-normal paired or tumor-only sequencing data. However, tumor tissues are often insufficient, unavailable, or otherwise difficult to procure. Increasing clinical evidence indicates the enormous potential of plasma circulating cell-free DNA (cfNDA) technology as a noninvasive MSI detection approach. RESULTS: We developed MSIsensor-ct, a bioinformatics tool based on a machine learning protocol, dedicated to detecting MSI status using cfDNA sequencing data with a potential stable MSIscore threshold of 20%. Evaluation of MSIsensor-ct on independent testing datasets with various levels of circulating tumor DNA (ctDNA) and sequencing depth showed 100% accuracy within the limit of detection (LOD) of 0.05% ctDNA content. MSIsensor-ct requires only BAM files as input, rendering it user-friendly and readily integrated into next generation sequencing (NGS) analysis pipelines. AVAILABILITY: MSIsensor-ct is freely available at https://github.com/niu-lab/MSIsensor-ct. SUPPLEMENTARY INFORMATION: Supplementary data are available at Briefings in Bioinformatics online

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Multi-Objective Risk Assessment on Water Resources Optimal Allocation

    No full text

    How Big Data and High-performance Computing Drive Brain Science

    No full text
    Brain science accelerates the study of intelligence and behavior, contributes fundamental insights into human cognition, and offers prospective treatments for brain disease. Faced with the challenges posed by imaging technologies and deep learning computational models, big data and high-performance computing (HPC) play essential roles in studying brain function, brain diseases, and large-scale brain models or connectomes. We review the driving forces behind big data and HPC methods applied to brain science, including deep learning, powerful data analysis capabilities, and computational performance solutions, each of which can be used to improve diagnostic accuracy and research output. This work reinforces predictions that big data and HPC will continue to improve brain science by making ultrahigh-performance analysis possible, by improving data standardization and sharing, and by providing new neuromorphic insights. Keywords: Brain science, Big data, High-performance computing, Brain connectomes, Deep learnin

    Gclust: A Parallel Clustering Tool for Microbial Genomic Data

    No full text
    The accelerating growth of the public microbial genomic data imposes substantial burden on the research community that uses such resources. Building databases for non-redundant reference sequences from massive microbial genomic data based on clustering analysis is essential. However, existing clustering algorithms perform poorly on long genomic sequences. In this article, we present Gclust, a parallel program for clustering complete or draft genomic sequences, where clustering is accelerated with a novel parallelization strategy and a fast sequence comparison algorithm using sparse suffix arrays (SSAs). Moreover, genome identity measures between two sequences are calculated based on their maximal exact matches (MEMs). In this paper, we demonstrate the high speed and clustering quality of Gclust by examining four genome sequence datasets. Gclust is freely available for non-commercial use at https://github.com/niu-lab/gclust. We also introduce a web server for clustering user-uploaded genomes at http://niulab.scgrid.cn/gclust. Keywords: Microbial genome clustering, Parallelization, Sparse suffix array, Maximal exact match, Segment extensio

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe
    corecore