161 research outputs found

    Impact of Sample Preparation Methods on Single-Cell X-ray Microscopy and Light Elemental Analysis Evaluated by Combined Low Energy X-ray Fluorescence, STXM and AFM

    Get PDF
    Background: Although X-ray fluorescence microscopy is becoming a widely used technique for single-cell analysis, sample preparation for this microscopy remains one of the main challenges in obtaining optimal conditions for the measurements in the X-ray regime. The information available to researchers on sample treatment is inadequate and unclear, sometimes leading to wasted time and jeopardizing the experiment's success. Many cell fixation methods have been described, but none of them have been systematically tested and declared the most suitable for synchrotron X-ray microscopy. Methods: The HEC-1-A endometrial cells, human spermatozoa, and human embryonic kidney (HEK-293) cells were fixed with organic solvents and cross-linking methods: 70% ethanol, 3.7%, and 2% paraformaldehyde; in addition, HEK-293 cells were subjected to methanol/ C3H6O treatment and cryofixation. Fixation methods were compared by coupling low-energy X-ray fluorescence with scanning transmission X-ray microscopy and atomic force microscopy. Results: Organic solvents lead to greater dehydration of cells, which has the most significant effect on the distribution and depletion of diffusion elements. Paraformaldehyde provides robust and reproducible data. Finally, the cryofixed cells provide the best morphology and element content results. Conclusion: Although cryofixation seems to be the most appropriate method as it allows for keeping cells closer to physiological conditions, it has some technical limitations. Paraformaldehyde, when used at the average concentration of 3.7%, is also an excellent alternative for X-ray microscopy

    Unexpected silicon localization in calcium carbonate exoskeleton of cultured and fossil coccolithophores

    Get PDF
    Coccolithophores, marine calcifying phytoplankton, are important primary producers impacting the global carbon cycle at different timescales. Their biomineral structures, the calcite containing coccoliths, are among the most elaborate hard parts of any organism. Understanding the morphogenesis of coccoliths is not only relevant in the context of coccolithophore eco-physiology but will also inform biomineralization and crystal design research more generally. The recent discovery of a silicon (Si) requirement for crystal shaping in some coccolithophores has opened up a new avenue of biomineralization research. In order to develop a mechanistic understanding of the role of Si, the presence and localization of this chemical element in coccoliths needs to be known. Here, we document for the first time the uneven Si distribution in Helicosphaera carteri coccoliths through three synchrotron-based techniques employing X-ray Fluorescence and Infrared Spectromicroscopy. The enrichment of Si in specific areas of the coccoliths point to a targeted role of this element in the coccolith formation. Our findings mark a key step in biomineralization research because it opens the door for a detailed mechanistic understanding of the role Si plays in shaping coccolith crystals

    Photometry of ET Andromedae and pulsation of HD 219891

    Get PDF
    ET And is a binary system with a B9p(Si) star as the main component. We report on the photometric observing campaigns in 1988, 1989 and 1994 which confirmed the rotation period of 1(.)(d)618875 for ET And while refuting other published values. Furthermore, the controversial issue of pulsational stability of ET And is resolved since we have discovered pulsation for HD 219891, which was the main comparison star and sometimes exclusively used. The frequency of 10.0816 d(-1), a semi-amplitude of 2.5 mmag, T(eff) and M(v) suggest this comparison star to be a delta Scuti variable close to the blue border of the instability strip. The pulsational stability of ET And could be clearly established and hence no need exists to derive new driving mechanisms for stars between the classical instability strip and the region of slowly pulsating B-type (SPB) stars

    Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer

    Get PDF
    BACKGROUND: The discovery of ERG/ETV1 gene rearrangements and PTEN gene loss warrants investigation in a mechanism-based prognostic classification of prostate cancer (PCa). The study objective was to evaluate the potential clinical significance and natural history of different disease categories by combining ERG/ETV1 gene rearrangements and PTEN gene loss status. METHODS: We utilised fluorescence in situ hybridisation (FISH) assays to detect PTEN gene loss and ERG/ETV1 gene rearrangements in 308 conservatively managed PCa patients with survival outcome data. RESULTS: ERG/ETV1 gene rearrangements alone and PTEN gene loss alone both failed to show a link to survival in multivariate analyses. However, there was a strong interaction between ERG/ETV1 gene rearrangements and PTEN gene loss (P<0.001). The largest subgroup of patients (54%), lacking both PTEN gene loss and ERG/ETV1 gene rearrangements comprised a 'good prognosis' population exhibiting favourable cancer-specific survival (85.5% alive at 11 years). The presence of PTEN gene loss in the absence of ERG/ETV1 gene rearrangements identified a patient population (6%) with poorer cancer-specific survival that was highly significant (HR=4.87, P<0.001 in multivariate analysis, 13.7% survival at 11 years) when compared with the 'good prognosis' group. ERG/ETV1 gene rearrangements and PTEN gene loss status should now prospectively be incorporated into a predictive model to establish whether predictive performance is improved. CONCLUSIONS: Our data suggest that FISH studies of PTEN gene loss and ERG/ETV1 gene rearrangements could be pursued for patient stratification, selection and hypothesis-generating subgroup analyses in future PCa clinical trials and potentially in patient management

    Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that trigger KSHV reactivation remain unclear. Here, we show that the reactive oxygen species (ROS) hydrogen peroxide (H2O2) induces KSHV reactivation from latency through both autocrine and paracrine signaling. Furthermore, KSHV spontaneous lytic replication, and KSHV reactivation from latency induced by oxidative stress, hypoxia, and proinflammatory and proangiogenic cytokines are mediated by H2O2. Mechanistically, H2O2 induction of KSHV reactivation depends on the activation of mitogen-activated protein kinase ERK1/2, JNK, and p38 pathways. Significantly, H2O2 scavengers N-acetyl-L-cysteine (NAC), catalase and glutathione inhibit KSHV lytic replication in culture. In a mouse model of KSHV-induced lymphoma, NAC effectively inhibits KSHV lytic replication and significantly prolongs the lifespan of the mice. These results directly relate KSHV reactivation to oxidative stress and inflammation, which are physiological hallmarks of KS patients. The discovery of this novel mechanism of KSHV reactivation indicates that antioxidants and anti-inflammation drugs could be promising preventive and therapeutic agents for effectively targeting KSHV replication and KSHV-related malignancies

    How many bird and mammal extinctions has recent conservation action prevented?

    Get PDF
    Aichi Target 12 of the Convention on Biological Diversity (CBD) contains the aim to ‘prevent extinctions of known threatened species’. To measure the degree to which this was achieved, we used expert elicitation to estimate the number of bird and mammal species whose extinctions were prevented by conservation action in 1993–2020 (the lifetime of the CBD) and 2010–2020 (the timing of Aichi Target 12). We found that conservation action prevented 21–32 bird and 7–16 mammal extinctions since 1993, and 9–18 bird and two to seven mammal extinctions since 2010. Many remain highly threatened and may still become extinct. Considering that 10 bird and five mammal species did go extinct (or are strongly suspected to) since 1993, extinction rates would have been 2.9–4.2 times greater without conservation action. While policy commitments have fostered significant conservation achievements, future biodiversity action needs to be scaled up to avert additional extinctions

    FOXM1 Induces a Global Methylation Signature That Mimics the Cancer Epigenome in Head and Neck Squamous Cell Carcinoma

    Get PDF
    The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (n = 8), dysplasias (n = 5) and head and neck squamous cell carcinoma (HNSCC) cell lines (n = 11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions

    Geolocation with respect to persona privacy for the Allergy Diary app - a MASK study

    Get PDF
    Background: Collecting data on the localization of users is a key issue for the MASK (Mobile Airways Sentinel network: the Allergy Diary) App. Data anonymization is a method of sanitization for privacy. The European Commission's Article 29 Working Party stated that geolocation information is personal data. To assess geolocation using the MASK method and to compare two anonymization methods in the MASK database to find an optimal privacy method. Methods: Geolocation was studied for all people who used the Allergy Diary App from December 2015 to November 2017 and who reported medical outcomes. Two different anonymization methods have been evaluated: Noise addition (randomization) and k-anonymity (generalization). Results: Ninety-three thousand one hundred and sixteen days of VAS were collected from 8535 users and 54,500 (58. 5%) were geolocalized, corresponding to 5428 users. Noise addition was found to be less accurate than k-anonymity using MASK data to protect the users' life privacy. Discussion: k-anonymity is an acceptable method for the anonymization of MASK data and results can be used for other databases.Peer reviewe
    corecore